{"title":"Resolving Conformational Plasticity in Mammalian Cells with High-Resolution Fluorescence Tools.","authors":"Hao Ruan, Edward A Lemke","doi":"10.1146/annurev-physchem-082423-030632","DOIUrl":null,"url":null,"abstract":"<p><p>Investigating protein dynamic structural changes is fundamental for understanding protein function, drug discovery, and disease mechanisms. Traditional studies of protein dynamics often rely on investigations of purified systems, which fail to capture the complexity of the cellular environment. The intracellular milieu imposes distinct physicochemical constraints that affect macromolecular interactions and dynamics in ways not easily replicated in isolated experimental setups. We discuss the use of fluorescence resonance energy transfer, fluorescence anisotropy, and minimal photon flux imaging technologies to address these challenges and directly investigate protein conformational dynamics in mammalian cells. Key findings from the application of these techniques demonstrate their potential to reveal intricate details of protein conformational plasticity. By overcoming the limitations of traditional in vitro methods, these approaches offer a more accurate and comprehensive understanding of protein function and behavior within the complex environment of mammalian cells.</p>","PeriodicalId":7967,"journal":{"name":"Annual review of physical chemistry","volume":"76 1","pages":"103-128"},"PeriodicalIF":11.7000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annual review of physical chemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1146/annurev-physchem-082423-030632","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Investigating protein dynamic structural changes is fundamental for understanding protein function, drug discovery, and disease mechanisms. Traditional studies of protein dynamics often rely on investigations of purified systems, which fail to capture the complexity of the cellular environment. The intracellular milieu imposes distinct physicochemical constraints that affect macromolecular interactions and dynamics in ways not easily replicated in isolated experimental setups. We discuss the use of fluorescence resonance energy transfer, fluorescence anisotropy, and minimal photon flux imaging technologies to address these challenges and directly investigate protein conformational dynamics in mammalian cells. Key findings from the application of these techniques demonstrate their potential to reveal intricate details of protein conformational plasticity. By overcoming the limitations of traditional in vitro methods, these approaches offer a more accurate and comprehensive understanding of protein function and behavior within the complex environment of mammalian cells.
期刊介绍:
The Annual Review of Physical Chemistry has been published since 1950 and is a comprehensive resource for significant advancements in the field. It encompasses various sub-disciplines such as biophysical chemistry, chemical kinetics, colloids, electrochemistry, geochemistry and cosmochemistry, chemistry of the atmosphere and climate, laser chemistry and ultrafast processes, the liquid state, magnetic resonance, physical organic chemistry, polymers and macromolecules, and others.