Applied Categorical Structures最新文献

筛选
英文 中文
On n-unital and n-Mal’tsev categories 关于 n-unital 和 n-Mal'tsev 范畴
IF 0.6 4区 数学
Applied Categorical Structures Pub Date : 2024-10-15 DOI: 10.1007/s10485-024-09789-6
Dominique Bourn, Michael Hoefnagel
{"title":"On n-unital and n-Mal’tsev categories","authors":"Dominique Bourn,&nbsp;Michael Hoefnagel","doi":"10.1007/s10485-024-09789-6","DOIUrl":"10.1007/s10485-024-09789-6","url":null,"abstract":"<div><p>Inspired by some properties of the (dual of the) category of 2-nilpotent groups, we introduce the notion of 2-unital and 2-Mal’tsev categories which, in some sense, generalises the notion of unital and Mal’tsev categories, and we characterise their varietal occurrences. This is actually the first step of an inductive process which we begin to unfold.\u0000</p></div>","PeriodicalId":7952,"journal":{"name":"Applied Categorical Structures","volume":"32 6","pages":""},"PeriodicalIF":0.6,"publicationDate":"2024-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10485-024-09789-6.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142438710","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Homotopical Models for Metric Spaces and Completeness 度量空间的同托邦模型与完备性
IF 0.6 4区 数学
Applied Categorical Structures Pub Date : 2024-10-04 DOI: 10.1007/s10485-024-09788-7
Isaiah Dailey, Clara Huggins, Semir Mujevic, Chloe Shupe
{"title":"Homotopical Models for Metric Spaces and Completeness","authors":"Isaiah Dailey,&nbsp;Clara Huggins,&nbsp;Semir Mujevic,&nbsp;Chloe Shupe","doi":"10.1007/s10485-024-09788-7","DOIUrl":"10.1007/s10485-024-09788-7","url":null,"abstract":"<div><p>Categories enriched in the opposite poset of non-negative reals can be viewed as generalizations of metric spaces, known as Lawvere metric spaces. In this article, we develop model structures on the categories <span>({mathbb {R}_+text {-}textbf{Cat}})</span> and <span>({mathbb {R}_+text {-}textbf{Cat}}^textrm{sym})</span> of Lawvere metric spaces and symmetric Lawvere metric spaces, each of which captures different features pertinent to the study of metric spaces. More precisely, in the three model structures we construct, the fibrant–cofibrant objects are the extended metric spaces (in the usual sense), the Cauchy complete Lawvere metric spaces, and the Cauchy complete extended metric spaces, respectively. Finally, we show that two of these model structures are unique in a similar way to the canonical model structure on <span>(textbf{Cat})</span>.\u0000</p></div>","PeriodicalId":7952,"journal":{"name":"Applied Categorical Structures","volume":"32 6","pages":""},"PeriodicalIF":0.6,"publicationDate":"2024-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142409923","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The Commutant and Center of a Generalized Green Functor 广义绿色函数的换元和中心
IF 0.6 4区 数学
Applied Categorical Structures Pub Date : 2024-09-25 DOI: 10.1007/s10485-024-09785-w
Sael Cruz Cabello
{"title":"The Commutant and Center of a Generalized Green Functor","authors":"Sael Cruz Cabello","doi":"10.1007/s10485-024-09785-w","DOIUrl":"10.1007/s10485-024-09785-w","url":null,"abstract":"<div><p>After fixing a commutative ring with unit <i>R</i>, we present the definition of <i>adequate category</i> and consider the category of <i>R</i>-linear functors from an adequate category to the category of <i>R</i>-modules. We endow this category of functors with a monoidal structure and study monoids (generalized Green functors) over it. For one of these generalized Green functors, we define two new monoids, its commutant and its center, and study some of their properties and relations between them. This work generalizes the article [3].</p></div>","PeriodicalId":7952,"journal":{"name":"Applied Categorical Structures","volume":"32 5","pages":""},"PeriodicalIF":0.6,"publicationDate":"2024-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142413772","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A Characterization of Differential Bundles in Tangent Categories 切线范畴中微分束的特征
IF 0.6 4区 数学
Applied Categorical Structures Pub Date : 2024-09-16 DOI: 10.1007/s10485-024-09786-9
Michael Ching
{"title":"A Characterization of Differential Bundles in Tangent Categories","authors":"Michael Ching","doi":"10.1007/s10485-024-09786-9","DOIUrl":"10.1007/s10485-024-09786-9","url":null,"abstract":"<div><p>A tangent category is a categorical abstraction of the tangent bundle construction for smooth manifolds. In that context, Cockett and Cruttwell develop the notion of differential bundle which, by work of MacAdam, generalizes the notion of smooth vector bundle to the abstract setting. Here we provide a new characterization of differential bundles and show that, up to isomorphism, a differential bundle is determined by its projection map and zero section. We show how these results can be used to quickly identify differential bundles in various tangent categories.</p></div>","PeriodicalId":7952,"journal":{"name":"Applied Categorical Structures","volume":"32 5","pages":""},"PeriodicalIF":0.6,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142249639","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Diagrammatics for Comodule Monads 组合单子图解法
IF 0.6 4区 数学
Applied Categorical Structures Pub Date : 2024-08-29 DOI: 10.1007/s10485-024-09778-9
Sebastian Halbig, Tony Zorman
{"title":"Diagrammatics for Comodule Monads","authors":"Sebastian Halbig,&nbsp;Tony Zorman","doi":"10.1007/s10485-024-09778-9","DOIUrl":"10.1007/s10485-024-09778-9","url":null,"abstract":"<div><p>We extend Willerton’s [24] graphical calculus for bimonads to comodule monads, a monadic interpretation of module categories over a monoidal category. As an application, we prove a version of Tannaka–Krein duality for these structures.</p></div>","PeriodicalId":7952,"journal":{"name":"Applied Categorical Structures","volume":"32 5","pages":""},"PeriodicalIF":0.6,"publicationDate":"2024-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10485-024-09778-9.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142226626","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Functorial Polar Functions in Compact Normal Joinfit Frames 紧凑法向 Joinfit 框架中的扇形极坐标函数
IF 0.6 4区 数学
Applied Categorical Structures Pub Date : 2024-08-23 DOI: 10.1007/s10485-024-09783-y
Ricardo E. Carrera
{"title":"Functorial Polar Functions in Compact Normal Joinfit Frames","authors":"Ricardo E. Carrera","doi":"10.1007/s10485-024-09783-y","DOIUrl":"10.1007/s10485-024-09783-y","url":null,"abstract":"<div><p><span>(mathfrak {KNJ})</span> is the category of compact normal joinfit frames and frame homomorphisms. <span>(mathcal {P}F)</span> is the complete boolean algebra of polars of the frame <i>F</i>. A function <span>(mathfrak {X})</span> that assigns to each <span>(F in mathfrak {KNJ})</span> a subalgebra <span>(mathfrak {X}(F))</span> of <span>(mathcal {P}F)</span> that contains the complemented elements of <i>F</i> is a polar function. A polar function <span>(mathfrak {X})</span> is invariant (resp., functorial) if whenever <span>(phi : F longrightarrow H in mathfrak {KNJ})</span> is <span>(mathcal {P})</span>-essential (resp., skeletal) and <span>(p in mathfrak {X}(F))</span>, then <span>(phi (p)^{perp perp } in mathfrak {X}(H))</span>. <span>(phi : F longrightarrow H in mathfrak {KNJ})</span> is <span>(mathfrak {X})</span>-splitting if <span>(phi )</span> is <span>(mathcal {P})</span>-essential and whenever <span>(p in mathfrak {X}(F))</span>, then <span>(phi (p)^{perp perp })</span> is complemented in <i>H</i>. <span>(F in mathfrak {KNJ})</span> is <span>(mathfrak {X})</span>-projectable means that every <span>(p in mathfrak {X}(F))</span> is complemented. For a polar function <span>(mathfrak {X})</span> and <span>(F in mathfrak {KNJ})</span>, we construct the least <span>(mathfrak {X})</span>-splitting frame of <i>F</i>. Moreover, we prove that if <span>(mathfrak {X})</span> is a functorial polar function, then the class of <span>(mathfrak {X})</span>-projectable frames is a <span>(mathcal {P})</span>-essential monoreflective subcategory of <span>(mathfrak {KNJS})</span>, the category of <span>(mathfrak {KNJ})</span>-objects and skeletal maps (the case <span>(mathfrak {X}= mathcal {P})</span> is the result from Martínez and Zenk, which states that the class of strongly projectable <span>(mathfrak {KNJ})</span>-objects is a reflective subcategory of <span>(mathfrak {KNJS})</span>).</p></div>","PeriodicalId":7952,"journal":{"name":"Applied Categorical Structures","volume":"32 5","pages":""},"PeriodicalIF":0.6,"publicationDate":"2024-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142208869","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The Differential Bundles of the Geometric Tangent Category of an Operad 算子几何切线范畴的差分束
IF 0.6 4区 数学
Applied Categorical Structures Pub Date : 2024-08-19 DOI: 10.1007/s10485-024-09771-2
Marcello Lanfranchi
{"title":"The Differential Bundles of the Geometric Tangent Category of an Operad","authors":"Marcello Lanfranchi","doi":"10.1007/s10485-024-09771-2","DOIUrl":"10.1007/s10485-024-09771-2","url":null,"abstract":"<div><p>Affine schemes can be understood as objects of the opposite of the category of commutative and unital algebras. Similarly, <span>(mathscr {P})</span>-affine schemes can be defined as objects of the opposite of the category of algebras over an operad <span>(mathscr {P})</span>. An example is the opposite of the category of associative algebras. The category of operadic schemes of an operad carries a canonical tangent structure. This paper aims to initiate the study of the geometry of operadic affine schemes via this tangent category. For example, we expect the tangent structure over the opposite of the category of associative algebras to describe algebraic non-commutative geometry. In order to initiate such a program, the first step is to classify differential bundles, which are the analogs of vector bundles for differential geometry. In this paper, we prove that the tangent category of affine schemes of the enveloping operad <span>(mathscr {P}^{(A)})</span> over a <span>(mathscr {P})</span>-affine scheme <i>A</i> is precisely the slice tangent category over <i>A</i> of <span>(mathscr {P})</span>-affine schemes. We are going to employ this result to show that differential bundles over a <span>(mathscr {P})</span>-affine scheme <i>A</i> are precisely <i>A</i>-modules in the operadic sense.</p></div>","PeriodicalId":7952,"journal":{"name":"Applied Categorical Structures","volume":"32 5","pages":""},"PeriodicalIF":0.6,"publicationDate":"2024-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142208870","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Semiseparable Functors and Conditions up to Retracts 半可分函数和条件直至撤回
IF 0.6 4区 数学
Applied Categorical Structures Pub Date : 2024-08-13 DOI: 10.1007/s10485-024-09782-z
Alessandro Ardizzoni, Lucrezia Bottegoni
{"title":"Semiseparable Functors and Conditions up to Retracts","authors":"Alessandro Ardizzoni,&nbsp;Lucrezia Bottegoni","doi":"10.1007/s10485-024-09782-z","DOIUrl":"10.1007/s10485-024-09782-z","url":null,"abstract":"<div><p>In a previous paper we introduced the concept of semiseparable functor. Here we continue our study of these functors in connection with idempotent (Cauchy) completion. To this aim, we introduce and investigate the notions of (co)reflection and bireflection up to retracts. We show that the (co)comparison functor attached to an adjunction whose associated (co)monad is separable is a coreflection (reflection) up to retracts. This fact allows us to prove that a right (left) adjoint functor is semiseparable if and only if the associated (co)monad is separable and the (co)comparison functor is a bireflection up to retracts, extending a characterization pursued by X.-W. Chen in the separable case. Finally, we provide a semi-analogue of a result obtained by P. Balmer in the framework of pre-triangulated categories.</p></div>","PeriodicalId":7952,"journal":{"name":"Applied Categorical Structures","volume":"32 5","pages":""},"PeriodicalIF":0.6,"publicationDate":"2024-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10485-024-09782-z.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142208871","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Homotopy Quotients and Comodules of Supercommutative Hopf Algebras 超交换霍普夫布拉斯的同调对数和协元
IF 0.6 4区 数学
Applied Categorical Structures Pub Date : 2024-08-12 DOI: 10.1007/s10485-024-09781-0
Thorsten Heidersdorf, Rainer Weissauer
{"title":"Homotopy Quotients and Comodules of Supercommutative Hopf Algebras","authors":"Thorsten Heidersdorf,&nbsp;Rainer Weissauer","doi":"10.1007/s10485-024-09781-0","DOIUrl":"10.1007/s10485-024-09781-0","url":null,"abstract":"<div><p>We study model structures on the category of comodules of a supercommutative Hopf algebra <i>A</i> over fields of characteristic 0. Given a graded Hopf algebra quotient <span>(A rightarrow B)</span> satisfying some finiteness conditions, the Frobenius tensor category <span>({mathcal {D}})</span> of graded <i>B</i>-comodules with its stable model structure induces a monoidal model structure on <span>({mathcal {C}})</span>. We consider the corresponding homotopy quotient <span>(gamma : {mathcal {C}} rightarrow Ho {mathcal {C}})</span> and the induced quotient <span>({mathcal {T}} rightarrow Ho {mathcal {T}})</span> for the tensor category <span>({mathcal {T}})</span> of finite dimensional <i>A</i>-comodules. Under some mild conditions we prove vanishing and finiteness theorems for morphisms in <span>(Ho {mathcal {T}})</span>. We apply these results in the <i>Rep</i>(<i>GL</i>(<i>m</i>|<i>n</i>))-case and study its homotopy category <span>(Ho {mathcal {T}})</span> associated to the parabolic subgroup of upper triangular block matrices. We construct cofibrant replacements and show that the quotient of <span>(Ho{mathcal {T}})</span> by the negligible morphisms is again the representation category of a supergroup scheme.</p></div>","PeriodicalId":7952,"journal":{"name":"Applied Categorical Structures","volume":"32 5","pages":""},"PeriodicalIF":0.6,"publicationDate":"2024-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10485-024-09781-0.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141938174","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Topological Quantum Field Theories and Homotopy Cobordisms 拓扑量子场论与同调共线性
IF 0.6 4区 数学
Applied Categorical Structures Pub Date : 2024-07-31 DOI: 10.1007/s10485-024-09776-x
Fiona Torzewska
{"title":"Topological Quantum Field Theories and Homotopy Cobordisms","authors":"Fiona Torzewska","doi":"10.1007/s10485-024-09776-x","DOIUrl":"10.1007/s10485-024-09776-x","url":null,"abstract":"<div><p>We construct a category <span>({textrm{HomCob}})</span> whose objects are <i>homotopically 1-finitely generated</i> topological spaces, and whose morphisms are <i>cofibrant cospans</i>. Given a manifold submanifold pair (<i>M</i>, <i>A</i>), we prove that there exists functors into <span>({textrm{HomCob}})</span> from the full subgroupoid of the mapping class groupoid <span>(textrm{MCG}_{M}^{A})</span>, and from the full subgroupoid of the motion groupoid <span>(textrm{Mot}_{M}^{A})</span>, whose objects are homotopically 1-finitely generated. We also construct a family of functors <span>({textsf{Z}}_G:{textrm{HomCob}}rightarrow {textbf{Vect}})</span>, one for each finite group <i>G</i>. These generalise topological quantum field theories previously constructed by Yetter, and an untwisted version of Dijkgraaf–Witten. Given a space <i>X</i>, we prove that <span>({textsf{Z}}_G(X))</span> can be expressed as the <span>({mathbb {C}})</span>-vector space with basis natural transformation classes of maps from <span>(pi (X,X_0))</span> to <i>G</i> for some finite representative set of points <span>(X_0subset X)</span>, demonstrating that <span>({textsf{Z}}_G)</span> is explicitly calculable.</p></div>","PeriodicalId":7952,"journal":{"name":"Applied Categorical Structures","volume":"32 4","pages":""},"PeriodicalIF":0.6,"publicationDate":"2024-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10485-024-09776-x.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141868290","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信