{"title":"Presentations of Pseudodistributive Laws","authors":"Charles Walker","doi":"10.1007/s10485-024-09798-5","DOIUrl":null,"url":null,"abstract":"<div><p>By considering the situation in which the involved pseudomonads are presented in no-iteration form, we deduce a number of alternative presentations of pseudodistributive laws including a “decagon” form, a pseudoalgebra form, a no-iteration form, and a warping form. As an application, we show that five coherence axioms suffice in the usual monoidal definition of a pseudodistributive law.</p></div>","PeriodicalId":7952,"journal":{"name":"Applied Categorical Structures","volume":"33 1","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2025-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Categorical Structures","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10485-024-09798-5","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
By considering the situation in which the involved pseudomonads are presented in no-iteration form, we deduce a number of alternative presentations of pseudodistributive laws including a “decagon” form, a pseudoalgebra form, a no-iteration form, and a warping form. As an application, we show that five coherence axioms suffice in the usual monoidal definition of a pseudodistributive law.
期刊介绍:
Applied Categorical Structures focuses on applications of results, techniques and ideas from category theory to mathematics, physics and computer science. These include the study of topological and algebraic categories, representation theory, algebraic geometry, homological and homotopical algebra, derived and triangulated categories, categorification of (geometric) invariants, categorical investigations in mathematical physics, higher category theory and applications, categorical investigations in functional analysis, in continuous order theory and in theoretical computer science. In addition, the journal also follows the development of emerging fields in which the application of categorical methods proves to be relevant.
Applied Categorical Structures publishes both carefully refereed research papers and survey papers. It promotes communication and increases the dissemination of new results and ideas among mathematicians and computer scientists who use categorical methods in their research.