Generalized Multicategories: Change-of-Base, Embedding, and Descent

IF 0.6 4区 数学 Q3 MATHEMATICS
Rui Prezado, Fernando Lucatelli Nunes
{"title":"Generalized Multicategories: Change-of-Base, Embedding, and Descent","authors":"Rui Prezado,&nbsp;Fernando Lucatelli Nunes","doi":"10.1007/s10485-024-09775-y","DOIUrl":null,"url":null,"abstract":"<div><p>Via the adjunction <span>\\( - *\\mathbbm {1} \\dashv \\mathcal V(\\mathbbm {1},-) :\\textsf {Span}({\\mathcal {V}}) \\rightarrow {\\mathcal {V}} \\text {-} \\textsf {Mat} \\)</span> and a cartesian monad <i>T</i> on an extensive category <span>\\( {\\mathcal {V}} \\)</span> with finite limits, we construct an adjunction <span>\\( - *\\mathbbm {1} \\dashv {\\mathcal {V}}(\\mathbbm {1},-) :\\textsf {Cat}(T,{\\mathcal {V}}) \\rightarrow ({\\overline{T}}, \\mathcal V)\\text{- }\\textsf{Cat} \\)</span> between categories of generalized enriched multicategories and generalized internal multicategories, provided the monad <i>T</i> satisfies a suitable property, which holds for several examples. We verify, moreover, that the left adjoint is fully faithful, and preserves pullbacks, provided that the copower functor <span>\\( - *\\mathbbm {1} :\\textsf {Set} \\rightarrow {\\mathcal {V}} \\)</span> is fully faithful. We also apply this result to study descent theory of generalized enriched multicategorical structures. These results are built upon the study of base-change for generalized multicategories, which, in turn, was carried out in the context of categories of horizontal lax algebras arising out of a monad in a suitable 2-category of pseudodouble categories.\n</p></div>","PeriodicalId":7952,"journal":{"name":"Applied Categorical Structures","volume":null,"pages":null},"PeriodicalIF":0.6000,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10485-024-09775-y.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Categorical Structures","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10485-024-09775-y","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Via the adjunction \( - *\mathbbm {1} \dashv \mathcal V(\mathbbm {1},-) :\textsf {Span}({\mathcal {V}}) \rightarrow {\mathcal {V}} \text {-} \textsf {Mat} \) and a cartesian monad T on an extensive category \( {\mathcal {V}} \) with finite limits, we construct an adjunction \( - *\mathbbm {1} \dashv {\mathcal {V}}(\mathbbm {1},-) :\textsf {Cat}(T,{\mathcal {V}}) \rightarrow ({\overline{T}}, \mathcal V)\text{- }\textsf{Cat} \) between categories of generalized enriched multicategories and generalized internal multicategories, provided the monad T satisfies a suitable property, which holds for several examples. We verify, moreover, that the left adjoint is fully faithful, and preserves pullbacks, provided that the copower functor \( - *\mathbbm {1} :\textsf {Set} \rightarrow {\mathcal {V}} \) is fully faithful. We also apply this result to study descent theory of generalized enriched multicategorical structures. These results are built upon the study of base-change for generalized multicategories, which, in turn, was carried out in the context of categories of horizontal lax algebras arising out of a monad in a suitable 2-category of pseudodouble categories.

广义多类别:基础变化、嵌入和后裔
通过连接词 \( - *\mathbbm {1}\textsf {Span}({\mathcal {V}}) \rightarrow\{mathcal {V}}\文本 {-}\textsf {Mat}\)和一个具有有限极限的广义范畴上的笛卡尔单子T 我们构造了一个迭加(- *\mathbbm {1}\textsf {Cat}(T,{mathcal {V}}) \rightarrow ({\overline{T}}, \mathcal V)\text{- }\textsf{Cat}}.\)之间的广义丰富多范畴和广义内部多范畴,前提是单子 T 满足一个合适的性质,这在几个例子中都成立。此外,我们还验证了左邻接是完全忠实的,并且保留了回拉,前提是共权函子(- *\mathbbm {1} :\textsf {Set} \rightarrow {\mathcal {V}} \)是完全忠实的。我们还将这一结果应用于研究广义富集多分类结构的下降理论。这些结果是建立在对广义多类的基变研究的基础上的,而广义多类的基变研究又是在一个合适的伪双类的 2 类中的一元体所产生的水平涣散代数范畴的背景下进行的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.30
自引率
16.70%
发文量
29
审稿时长
>12 weeks
期刊介绍: Applied Categorical Structures focuses on applications of results, techniques and ideas from category theory to mathematics, physics and computer science. These include the study of topological and algebraic categories, representation theory, algebraic geometry, homological and homotopical algebra, derived and triangulated categories, categorification of (geometric) invariants, categorical investigations in mathematical physics, higher category theory and applications, categorical investigations in functional analysis, in continuous order theory and in theoretical computer science. In addition, the journal also follows the development of emerging fields in which the application of categorical methods proves to be relevant. Applied Categorical Structures publishes both carefully refereed research papers and survey papers. It promotes communication and increases the dissemination of new results and ideas among mathematicians and computer scientists who use categorical methods in their research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信