逼近的二元化、(aleph _1)投影性和沃培卡原理

IF 0.6 4区 数学 Q3 MATHEMATICS
Asmae Ben Yassine, Jan Trlifaj
{"title":"逼近的二元化、(aleph _1)投影性和沃培卡原理","authors":"Asmae Ben Yassine,&nbsp;Jan Trlifaj","doi":"10.1007/s10485-024-09791-y","DOIUrl":null,"url":null,"abstract":"<div><p>The approximation classes of modules that arise as components of cotorsion pairs are tied up by Salce’s duality. Here we consider general approximation classes of modules and investigate possibilities of dualization in dependence on closure properties of these classes. While some proofs are easily dualized, other dualizations require large cardinal principles, and some fail in ZFC, with counterexamples provided by classes of <span>\\(\\aleph _1\\)</span>-projective modules over non-perfect rings. For example, we show that the statement “each covering class of modules closed under homomorphic images is of the form <span>\\({\\mathrm{Gen\\,}}(M)\\)</span> for a module <i>M</i>” is equivalent to Vopěnka’s Principle.</p></div>","PeriodicalId":7952,"journal":{"name":"Applied Categorical Structures","volume":"32 6","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2024-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10485-024-09791-y.pdf","citationCount":"0","resultStr":"{\"title\":\"Dualizations of Approximations, \\\\(\\\\aleph _1\\\\)-Projectivity, and Vopěnka’s Principles\",\"authors\":\"Asmae Ben Yassine,&nbsp;Jan Trlifaj\",\"doi\":\"10.1007/s10485-024-09791-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The approximation classes of modules that arise as components of cotorsion pairs are tied up by Salce’s duality. Here we consider general approximation classes of modules and investigate possibilities of dualization in dependence on closure properties of these classes. While some proofs are easily dualized, other dualizations require large cardinal principles, and some fail in ZFC, with counterexamples provided by classes of <span>\\\\(\\\\aleph _1\\\\)</span>-projective modules over non-perfect rings. For example, we show that the statement “each covering class of modules closed under homomorphic images is of the form <span>\\\\({\\\\mathrm{Gen\\\\,}}(M)\\\\)</span> for a module <i>M</i>” is equivalent to Vopěnka’s Principle.</p></div>\",\"PeriodicalId\":7952,\"journal\":{\"name\":\"Applied Categorical Structures\",\"volume\":\"32 6\",\"pages\":\"\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2024-11-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s10485-024-09791-y.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Categorical Structures\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10485-024-09791-y\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Categorical Structures","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10485-024-09791-y","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

通过萨尔斯对偶性,模块的近似类作为反转对的成分出现。在此,我们考虑模块的一般近似类,并根据这些类的闭合性质研究对偶的可能性。虽然有些证明很容易对偶化,但其他对偶化需要大的心性原则,而且有些证明在 ZFC 中是失败的,非完备环上的\(\aleph _1\)-投影模块类提供了反例。例如,我们证明了 "在同态映像下封闭的模块的每个覆盖类对于模块 M 是 \({\mathrm{Gen\,}}(M)\) 形式 "等价于沃佩卡原理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Dualizations of Approximations, \(\aleph _1\)-Projectivity, and Vopěnka’s Principles

The approximation classes of modules that arise as components of cotorsion pairs are tied up by Salce’s duality. Here we consider general approximation classes of modules and investigate possibilities of dualization in dependence on closure properties of these classes. While some proofs are easily dualized, other dualizations require large cardinal principles, and some fail in ZFC, with counterexamples provided by classes of \(\aleph _1\)-projective modules over non-perfect rings. For example, we show that the statement “each covering class of modules closed under homomorphic images is of the form \({\mathrm{Gen\,}}(M)\) for a module M” is equivalent to Vopěnka’s Principle.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.30
自引率
16.70%
发文量
29
审稿时长
>12 weeks
期刊介绍: Applied Categorical Structures focuses on applications of results, techniques and ideas from category theory to mathematics, physics and computer science. These include the study of topological and algebraic categories, representation theory, algebraic geometry, homological and homotopical algebra, derived and triangulated categories, categorification of (geometric) invariants, categorical investigations in mathematical physics, higher category theory and applications, categorical investigations in functional analysis, in continuous order theory and in theoretical computer science. In addition, the journal also follows the development of emerging fields in which the application of categorical methods proves to be relevant. Applied Categorical Structures publishes both carefully refereed research papers and survey papers. It promotes communication and increases the dissemination of new results and ideas among mathematicians and computer scientists who use categorical methods in their research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信