G. S. H. Cruttwell, Jean-Simon Pacaud Lemay, Elias Vandenberg
{"title":"A Tangent Category Perspective on Connections in Algebraic Geometry","authors":"G. S. H. Cruttwell, Jean-Simon Pacaud Lemay, Elias Vandenberg","doi":"10.1007/s10485-024-09796-7","DOIUrl":null,"url":null,"abstract":"<div><p>There is an abstract notion of connection in any tangent category. In this paper, we show that when applied to the tangent category of affine schemes, this recreates the classical notion of a connection on a module (and similarly, in the tangent category of schemes, this recreates the notion of connection on a quasi-coherent sheaf of modules). By contrast, we also show that in the tangent category of algebras, there are no non-trivial connections.</p></div>","PeriodicalId":7952,"journal":{"name":"Applied Categorical Structures","volume":"33 1","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2024-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Categorical Structures","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10485-024-09796-7","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
There is an abstract notion of connection in any tangent category. In this paper, we show that when applied to the tangent category of affine schemes, this recreates the classical notion of a connection on a module (and similarly, in the tangent category of schemes, this recreates the notion of connection on a quasi-coherent sheaf of modules). By contrast, we also show that in the tangent category of algebras, there are no non-trivial connections.
期刊介绍:
Applied Categorical Structures focuses on applications of results, techniques and ideas from category theory to mathematics, physics and computer science. These include the study of topological and algebraic categories, representation theory, algebraic geometry, homological and homotopical algebra, derived and triangulated categories, categorification of (geometric) invariants, categorical investigations in mathematical physics, higher category theory and applications, categorical investigations in functional analysis, in continuous order theory and in theoretical computer science. In addition, the journal also follows the development of emerging fields in which the application of categorical methods proves to be relevant.
Applied Categorical Structures publishes both carefully refereed research papers and survey papers. It promotes communication and increases the dissemination of new results and ideas among mathematicians and computer scientists who use categorical methods in their research.