富预设类的(\infty \)两个模型之间的等价性

IF 0.6 4区 数学 Q3 MATHEMATICS
Hadrian Heine
{"title":"富预设类的(\\infty \\)两个模型之间的等价性","authors":"Hadrian Heine","doi":"10.1007/s10485-024-09792-x","DOIUrl":null,"url":null,"abstract":"<div><p>Let <span>\\({{\\mathcal {O}}}\\rightarrow {\\text {BM}}\\)</span> be a <span>\\({\\text {BM}}\\)</span>-operad that exhibits an <span>\\(\\infty \\)</span>-category <span>\\({{\\mathcal {D}}}\\)</span> as weakly bitensored over non-symmetric <span>\\(\\infty \\)</span>-operads <span>\\({{\\mathcal {V}}}\\rightarrow \\text {Ass }, {{\\mathcal {W}}}\\rightarrow \\text {Ass }\\)</span> and <span>\\({{\\mathcal {C}}}\\)</span> a <span>\\({{\\mathcal {V}}}\\)</span>-enriched <span>\\(\\infty \\)</span>-precategory. We construct an equivalence </p><div><div><span>$$\\begin{aligned} \\text {Fun}_{\\text {Hin}}^{{\\mathcal {V}}}({{\\mathcal {C}}},{{\\mathcal {D}}}) \\simeq \\text {Fun}^{{\\mathcal {V}}}({{\\mathcal {C}}},{{\\mathcal {D}}}) \\end{aligned}$$</span></div></div><p>of <span>\\(\\infty \\)</span>-categories weakly right tensored over <span>\\({{\\mathcal {W}}}\\)</span> between Hinich’s construction of <span>\\({{\\mathcal {V}}}\\)</span>-enriched functors of Hinich (Adv Math 367:107129, 2020) and our construction of <span>\\({{\\mathcal {V}}}\\)</span>-enriched functors of Heine (Adv Math 417:108941, 2023).\n</p></div>","PeriodicalId":7952,"journal":{"name":"Applied Categorical Structures","volume":"33 1","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2024-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10485-024-09792-x.pdf","citationCount":"0","resultStr":"{\"title\":\"An Equivalence Between Two Models of \\\\(\\\\infty \\\\)-Categories of Enriched Presheaves\",\"authors\":\"Hadrian Heine\",\"doi\":\"10.1007/s10485-024-09792-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Let <span>\\\\({{\\\\mathcal {O}}}\\\\rightarrow {\\\\text {BM}}\\\\)</span> be a <span>\\\\({\\\\text {BM}}\\\\)</span>-operad that exhibits an <span>\\\\(\\\\infty \\\\)</span>-category <span>\\\\({{\\\\mathcal {D}}}\\\\)</span> as weakly bitensored over non-symmetric <span>\\\\(\\\\infty \\\\)</span>-operads <span>\\\\({{\\\\mathcal {V}}}\\\\rightarrow \\\\text {Ass }, {{\\\\mathcal {W}}}\\\\rightarrow \\\\text {Ass }\\\\)</span> and <span>\\\\({{\\\\mathcal {C}}}\\\\)</span> a <span>\\\\({{\\\\mathcal {V}}}\\\\)</span>-enriched <span>\\\\(\\\\infty \\\\)</span>-precategory. We construct an equivalence </p><div><div><span>$$\\\\begin{aligned} \\\\text {Fun}_{\\\\text {Hin}}^{{\\\\mathcal {V}}}({{\\\\mathcal {C}}},{{\\\\mathcal {D}}}) \\\\simeq \\\\text {Fun}^{{\\\\mathcal {V}}}({{\\\\mathcal {C}}},{{\\\\mathcal {D}}}) \\\\end{aligned}$$</span></div></div><p>of <span>\\\\(\\\\infty \\\\)</span>-categories weakly right tensored over <span>\\\\({{\\\\mathcal {W}}}\\\\)</span> between Hinich’s construction of <span>\\\\({{\\\\mathcal {V}}}\\\\)</span>-enriched functors of Hinich (Adv Math 367:107129, 2020) and our construction of <span>\\\\({{\\\\mathcal {V}}}\\\\)</span>-enriched functors of Heine (Adv Math 417:108941, 2023).\\n</p></div>\",\"PeriodicalId\":7952,\"journal\":{\"name\":\"Applied Categorical Structures\",\"volume\":\"33 1\",\"pages\":\"\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2024-11-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s10485-024-09792-x.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Categorical Structures\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10485-024-09792-x\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Categorical Structures","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10485-024-09792-x","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

让 \({\mathcal {O}}}\rightarrow {\text {BM}}\) 是一个 \({\text {BM}}\)-operad ,它展示了一个 \(\infty \)-类别在非对称的(infty)-operads({{text {Ass }、和({{\mathcal {C}}} )一个({{\mathcal {V}}} )丰富的((\infty )-前类。我们构建一个等价 $$\begin{aligned}\text {Fun}_{text {Hin}}^{{\mathcal {V}}}({{\mathcal {C}}},{{{\mathcal {D}}}) \simeq \text {Fun}^{{\mathcal {V}}}({{\mathcal {C}}}、{Hinich's construction of \({{\mathcal {V}}})-enriched functors of Hinich (Adv Math 367:107129, 2020)和我们对海涅的 \({{\mathcal {V}}\)-enriched functors 的构造(Adv Math 417:108941, 2023)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An Equivalence Between Two Models of \(\infty \)-Categories of Enriched Presheaves

Let \({{\mathcal {O}}}\rightarrow {\text {BM}}\) be a \({\text {BM}}\)-operad that exhibits an \(\infty \)-category \({{\mathcal {D}}}\) as weakly bitensored over non-symmetric \(\infty \)-operads \({{\mathcal {V}}}\rightarrow \text {Ass }, {{\mathcal {W}}}\rightarrow \text {Ass }\) and \({{\mathcal {C}}}\) a \({{\mathcal {V}}}\)-enriched \(\infty \)-precategory. We construct an equivalence

$$\begin{aligned} \text {Fun}_{\text {Hin}}^{{\mathcal {V}}}({{\mathcal {C}}},{{\mathcal {D}}}) \simeq \text {Fun}^{{\mathcal {V}}}({{\mathcal {C}}},{{\mathcal {D}}}) \end{aligned}$$

of \(\infty \)-categories weakly right tensored over \({{\mathcal {W}}}\) between Hinich’s construction of \({{\mathcal {V}}}\)-enriched functors of Hinich (Adv Math 367:107129, 2020) and our construction of \({{\mathcal {V}}}\)-enriched functors of Heine (Adv Math 417:108941, 2023).

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.30
自引率
16.70%
发文量
29
审稿时长
>12 weeks
期刊介绍: Applied Categorical Structures focuses on applications of results, techniques and ideas from category theory to mathematics, physics and computer science. These include the study of topological and algebraic categories, representation theory, algebraic geometry, homological and homotopical algebra, derived and triangulated categories, categorification of (geometric) invariants, categorical investigations in mathematical physics, higher category theory and applications, categorical investigations in functional analysis, in continuous order theory and in theoretical computer science. In addition, the journal also follows the development of emerging fields in which the application of categorical methods proves to be relevant. Applied Categorical Structures publishes both carefully refereed research papers and survey papers. It promotes communication and increases the dissemination of new results and ideas among mathematicians and computer scientists who use categorical methods in their research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信