The European Physical Journal H最新文献

筛选
英文 中文
Historical and philosophical reflections on the Einstein-de Sitter model 对爱因斯坦-德西特模型的历史和哲学思考
IF 1 4区 物理与天体物理
The European Physical Journal H Pub Date : 2021-03-19 DOI: 10.1140/epjh/s13129-021-00007-8
Cormac O’Raifeartaigh, Michael O’Keeffe, Simon Mitton
{"title":"Historical and philosophical reflections on the Einstein-de Sitter model","authors":"Cormac O’Raifeartaigh,&nbsp;Michael O’Keeffe,&nbsp;Simon Mitton","doi":"10.1140/epjh/s13129-021-00007-8","DOIUrl":"https://doi.org/10.1140/epjh/s13129-021-00007-8","url":null,"abstract":"<p>We present some historical and philosophical reflections on the paper “<i>On the Relation Between the Expansion and the Mean Density of the Universe</i>”, published by Albert Einstein and Willem de Sitter in 1932. In this famous work, Einstein and de Sitter considered a relativistic model of the expanding universe with both the cosmological constant and the curvature of space set to zero. Although the Einstein-deSitter model went on to serve as a standard model in ‘big bang’ cosmology for many years, we note that the authors do not explicitly consider the evolution of the cosmos in the paper. Indeed, the mathematics of the article are quite puzzling to modern eyes. We consider claims that the paper was neither original nor important; we find that, by providing the first specific analysis of the case of a dynamic cosmology without a cosmological constant or spatial curvature, the authors delivered a unique, simple model with a straightforward relation between cosmic expansion and the mean density of matter that set an important benchmark for both theorists and observers. We consider some philosophical aspects of the model and provide a brief review of its use as a standard ‘big bang’ model over much of the <span>(20{mathrm {th}})</span> century.</p>","PeriodicalId":791,"journal":{"name":"The European Physical Journal H","volume":"46 1","pages":""},"PeriodicalIF":1.0,"publicationDate":"2021-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"5057387","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Exploring the boundary between atoms and the continuum by computers: a personal history 用计算机探索原子和连续体之间的边界:个人历史
IF 1 4区 物理与天体物理
The European Physical Journal H Pub Date : 2021-03-18 DOI: 10.1140/epjh/s13129-021-00010-z
Brad Lee Holian
{"title":"Exploring the boundary between atoms and the continuum by computers: a personal history","authors":"Brad Lee Holian","doi":"10.1140/epjh/s13129-021-00010-z","DOIUrl":"https://doi.org/10.1140/epjh/s13129-021-00010-z","url":null,"abstract":"<p>In this admittedly personal account of the history of atomistic simulations of fluids (at the atomic or molecular level), I will focus on the competing efforts to reach the boundary between atoms and the continuum. The prevailing <i>wisdom</i> was that thermal fluctuations at the atomistic scale—both time (a few mean collision times) and space (a few atomic spacings)—would make the connection virtually impossible. This is just a part of the story about how molecular dynamics was able to connect to Navier–Stokes–Fourier hydrodynamics. Resistance in the theoretical physics community to computer simulations of equilibrium fluids at the atomistic scale was only exceeded by the even stiffer objections to non-equilibrium molecular-dynamics simulations: after the fifty years from Boltzmann to molecular dynamics, it took another quarter century to overcome the doubts.</p>","PeriodicalId":791,"journal":{"name":"The European Physical Journal H","volume":"46 1","pages":""},"PeriodicalIF":1.0,"publicationDate":"2021-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"4725420","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
N.R. Sen: Father of Indian Applied mathematics N.R.森:印度应用数学之父
IF 1 4区 物理与天体物理
The European Physical Journal H Pub Date : 2021-03-04 DOI: 10.1140/epjh/s13129-021-00003-y
Saibal Ray, Utpal Mukhopadhyay, Rajinder Singh
{"title":"N.R. Sen: Father of Indian Applied mathematics","authors":"Saibal Ray,&nbsp;Utpal Mukhopadhyay,&nbsp;Rajinder Singh","doi":"10.1140/epjh/s13129-021-00003-y","DOIUrl":"https://doi.org/10.1140/epjh/s13129-021-00003-y","url":null,"abstract":"<p>Nikhilranjan Sen (1894–1963), popularly known as N.R. Sen, is known as the Father of Applied Mathematics and founder of the Calcutta School of Relativity Theory. He did Ph.D. in Berlin under the Nobel Laureate Max von Laue. In Berlin he came in contact with renowned physicists like Max Planck, Albert Einstein and their contemporaries. The present article, which is based on the primary sources, discusses the lesser known facts of his life, like the beginning of scientific career, background of his D.Sc. as well as Ph.D. theses, and detailed summary of his scientific works.</p>","PeriodicalId":791,"journal":{"name":"The European Physical Journal H","volume":"46 1","pages":""},"PeriodicalIF":1.0,"publicationDate":"2021-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"4173636","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
On the development of effective field theory 论有效场论的发展
IF 1 4区 物理与天体物理
The European Physical Journal H Pub Date : 2021-03-02 DOI: 10.1140/epjh/s13129-021-00004-x
Steven Weinberg
{"title":"On the development of effective field theory","authors":"Steven Weinberg","doi":"10.1140/epjh/s13129-021-00004-x","DOIUrl":"https://doi.org/10.1140/epjh/s13129-021-00004-x","url":null,"abstract":"<p><i>Editor’s note</i>: One of the most important developments in theoretical particle physics at the end of the 20th century and beginning of the twenty-first century has been the development of effective field theories (EFTs). Pursuing an effective field theory approach is a methodology for constructing theories, where a set of core principles is agreed upon, such as Lorentz symmetry and unitarity, and all possible interactions consistent with them are then compulsory in the theory. The utility of this approach to particle physics (and beyond) is wide ranging and undisputed, as evidenced by the recent formation of the international seminar series <i>All Things EFT</i> (Talks in the series can be viewed at https://www.youtube.com/channel/UC1_KF6kdJFoDEcLgpcegwCQ (accessed 21 December 2020).) which brings together each week the worldwide community of EFT practitioners. The text below is a lightly edited version of the talk given by Prof. Weinberg on September 30, 2020, which inaugurated the series. The talk reviews some of the early history of EFTs from the perspective of its pioneer and concludes with a discussion of EFT implications for future discovery.</p>","PeriodicalId":791,"journal":{"name":"The European Physical Journal H","volume":"46 1","pages":""},"PeriodicalIF":1.0,"publicationDate":"2021-03-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"4093050","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 28
Everett’s theory of the universal wave function 埃弗雷特的普适波函数理论
IF 1 4区 物理与天体物理
The European Physical Journal H Pub Date : 2021-02-24 DOI: 10.1140/epjh/s13129-021-00001-0
Biao Wu
{"title":"Everett’s theory of the universal wave function","authors":"Biao Wu","doi":"10.1140/epjh/s13129-021-00001-0","DOIUrl":"https://doi.org/10.1140/epjh/s13129-021-00001-0","url":null,"abstract":"<p>This is a tutorial for the many-worlds theory by Everett, which includes some of my personal views. It has two main parts. The first main part shows the emergence of many worlds in a universe consisting of only a Mach–Zehnder interferometer. The second main part is an abridgment of Everett’s long thesis, where his theory was originally elaborated in detail with clarity and rigor. Some minor comments are added in the abridgment in light of recent developments. Even if you do not agree to Everett’s view, you will still learn a great deal from his generalization of the uncertainty relation, his unique way of defining entanglement (or canonical correlation), his formulation of quantum measurement using Hamiltonian, and his relative state.</p>","PeriodicalId":791,"journal":{"name":"The European Physical Journal H","volume":"46 1","pages":""},"PeriodicalIF":1.0,"publicationDate":"2021-02-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"4931240","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Molecular simulation and the collaborative computational projects 分子模拟与协同计算项目
IF 1 4区 物理与天体物理
The European Physical Journal H Pub Date : 2020-12-14 DOI: 10.1140/epjh/e2020-10034-9
William Smith, Martyn Guest, Ilian Todorov, Paul Durham
{"title":"Molecular simulation and the collaborative computational projects","authors":"William Smith,&nbsp;Martyn Guest,&nbsp;Ilian Todorov,&nbsp;Paul Durham","doi":"10.1140/epjh/e2020-10034-9","DOIUrl":"https://doi.org/10.1140/epjh/e2020-10034-9","url":null,"abstract":"<p>\u0000In the late 1970s, the embryonic UK research community in molecular simulation – physicists and physical chemists – organised itself around CCP5, one of a set of <b>C</b>ollaborative <b>C</b>omputational <b>P</b>rojects in different fields. CCP5 acted to develop and use the software required by an evolving and expanding scientific agenda, to exploit quickly and efficiently the revolution in computing hardware and to educate and nurture the careers of future generations of researchers in the field. This collaboration formally began in 1980, and is still fully active now, 40 years later. Today, molecular simulation techniques, many of them pioneered by CCP5, are now used very widely, including in several other CCPs in the UK’s current family of Collaborative Computational Projects. This article tells the story of molecular simulation in the UK, with CCP5 itself at centre stage, using the written records in the CCP archives. The authors were, or are, all personally involved in this story.\u0000</p>","PeriodicalId":791,"journal":{"name":"The European Physical Journal H","volume":"45 4-5","pages":"259 - 343"},"PeriodicalIF":1.0,"publicationDate":"2020-12-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1140/epjh/e2020-10034-9","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"4566337","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The blossoming of quantum mechanics in Italy: the roots, the context and the first spreading in Italian universities (1900–1947) 量子力学在意大利的兴起:根源、背景和意大利大学的第一次传播(1900-1947)
IF 1 4区 物理与天体物理
The European Physical Journal H Pub Date : 2020-11-06 DOI: 10.1140/epjh/e2020-10044-0
Adele La Rana, Paolo Rossi
{"title":"The blossoming of quantum mechanics in Italy: the roots, the context and the first spreading in Italian universities (1900–1947)","authors":"Adele La Rana,&nbsp;Paolo Rossi","doi":"10.1140/epjh/e2020-10044-0","DOIUrl":"https://doi.org/10.1140/epjh/e2020-10044-0","url":null,"abstract":"<p>\u0000The widespread positivist approach of physics research in Italy at the turn of the XIX and XX centuries did not provide a fertile ground for the scientific debate on the atomic structure of matter, which instead raged beyond the Alps in those same years and which gave birth, during the 1920s, to the quantum revolution. Experimental investigations in spectroscopy and radioactivity were carried out with discrete success in the 1910s and early 1920s by Italian physicists such as Antonino Lo Surdo and Rita Brunetti in Florence, stimulating an empirical knowledge of early quantum theory and the acquisition of the related laboratory skills. However, the theoretical framework necessary for the reception and development of the postulates and formalisms of quantum mechanics started to be cultivated in Italy with a delay of a few decades compared to Central European countries. The diffusion of quantum studies – with their unprecedented drive toward an integration of experiment and theory – took hold in Italy beginning from the establishment of the first theoretical physics chairs (1926) at the Universities of Rome, Florence and Milan, whose origins are here described in detail. Furthermore, the present paper presents a systematic analysis of the appearance of the quantum mechanical concepts in Italian university courses between 1927 and 1947.\u0000</p>","PeriodicalId":791,"journal":{"name":"The European Physical Journal H","volume":"45 4-5","pages":"237 - 257"},"PeriodicalIF":1.0,"publicationDate":"2020-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1140/epjh/e2020-10044-0","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"4269368","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
Rudolf Ladenburg and the first quantum interpretation of optical dispersion Rudolf Ladenburg和光色散的第一个量子解释
IF 1 4区 物理与天体物理
The European Physical Journal H Pub Date : 2020-09-28 DOI: 10.1140/epjh/e2020-10027-6
Marta Jordi Taltavull
{"title":"Rudolf Ladenburg and the first quantum interpretation of optical dispersion","authors":"Marta Jordi Taltavull","doi":"10.1140/epjh/e2020-10027-6","DOIUrl":"https://doi.org/10.1140/epjh/e2020-10027-6","url":null,"abstract":"<p>In 1921, the experimental physicist Rudolf Ladenburg put forward the first quantum interpretation of optical dispersion. Theoretical physicists had tried to explain dispersion from the point of view of quantum theory ever since 1913, when Niels Bohr proposed his quantum model of atom. Yet, their theories proved unsuccessful. It was Ladenburg who gave a breakthrough step toward our quantum understanding of dispersion. In order to understand Ladenburg’s step, I analyze Ladenburg’s experimental work on dispersion prior to 1913, the reasons why the first theories of dispersion after 1913 were not satisfactory, and Ladenburg’s 1921 proposal. I argue that Ladenburg’s early experimental work on dispersion is indispensable to understand his 1921 paper. The specific kind of experiments he performed before 1913, the related interpretative problems, and the way he tried to solve them, led him reapproach the dispersion problem in 1921 in a way that was completely different from the way theoretical physicists had done it before.</p>","PeriodicalId":791,"journal":{"name":"The European Physical Journal H","volume":"45 2-3","pages":"123 - 173"},"PeriodicalIF":1.0,"publicationDate":"2020-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"5103541","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Ryogo Kubo in his formative years as a physicist 久保良古在他作为物理学家的成长时期
IF 1 4区 物理与天体物理
The European Physical Journal H Pub Date : 2020-09-16 DOI: 10.1140/epjh/e2020-10003-8
Hiroto Kono
{"title":"Ryogo Kubo in his formative years as a physicist","authors":"Hiroto Kono","doi":"10.1140/epjh/e2020-10003-8","DOIUrl":"https://doi.org/10.1140/epjh/e2020-10003-8","url":null,"abstract":"<p>The Japanese theoretical physicist Ryogo Kubo made remarkable contributions to statistical mechanics and condensed matter physics, amongst which his name is most widely associated with the linear response theory. Despite his importance in the history of modern physics, however, historians have paid him little attention. Using his unpublished manuscripts in a newly organized archive, this paper examines his studies and research up to the end of World War II. Influenced by his brother Masaji Kubo, a physical chemist, and the milieu at Tokyo Imperial University, he became interested in theoretical approaches to properties of matter and worked on dipolar gases and resistance in metals. After graduation, he studied three different phenomena—relaxation, melting, and rubber elasticity—by applying the method of eigenvalue problems. He was also involved in wartime research on noctovision and worked on photoemission in semiconductors. This paper also identifies two distinct focuses in his early research that persisted in his work after the war: solid-state physics and statistical mechanics in today’s terminology. Reconstructing Kubo’s formative years is instrumental for constructing a historiography of a key aspect of modern Japanese physics, namely, how the science of matter evolved before and during the war.</p>","PeriodicalId":791,"journal":{"name":"The European Physical Journal H","volume":"45 2-3","pages":"175 - 204"},"PeriodicalIF":1.0,"publicationDate":"2020-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1140/epjh/e2020-10003-8","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"4664114","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Real or not real that is the question... 这是真的还是假的问题……
IF 1 4区 物理与天体物理
The European Physical Journal H Pub Date : 2020-09-14 DOI: 10.1140/epjh/e2020-10022-x
Reinhold A. Bertlmann
{"title":"Real or not real that is the question...","authors":"Reinhold A. Bertlmann","doi":"10.1140/epjh/e2020-10022-x","DOIUrl":"https://doi.org/10.1140/epjh/e2020-10022-x","url":null,"abstract":"<p>My discussions with John Bell about reality in quantum mechanics are recollected. I would like to introduce the reader to Bell’s vision of reality which was for him a natural position for a scientist. Bell had a strong aversion against <i>“quantum jumps”</i> and insisted to be clear in phrasing quantum mechanics, his <i>“words to be forbidden”</i> proclaimed with seriousness and wit – both typical Bell characteristics – became legendary. I will summarize the Bell-type experiments and what Nature responded, and discuss the implications for the physical quantities considered, the <i>real</i> entities and the nonlocality concept due to Bell’s work. Subsequently, I also explain a quite different view of the meaning of a quantum state, this is the information theoretic approach, focusing on the work of Brukner and Zeilinger. Finally, I would like to broaden and contrast the reality discussion with the concept of “virtuality,” with the meaning of virtual particle occurring in quantum field theory. With some of my own thoughts I will conclude the paper which is composed more as a historical article than as a philosophical one.</p>","PeriodicalId":791,"journal":{"name":"The European Physical Journal H","volume":"45 2-3","pages":"205 - 236"},"PeriodicalIF":1.0,"publicationDate":"2020-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1140/epjh/e2020-10022-x","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"4590710","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 4
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信