{"title":"The quantum theory of gravitation, effective field theories, and strings: yesterday and today","authors":"Alessio Rocci, Thomas Van Riet","doi":"10.1140/epjh/s13129-024-00069-4","DOIUrl":null,"url":null,"abstract":"<div><p>This paper analyzes the effective field theory perspective on modern physics through the lens of the quantum theory of gravitational interaction. The historical part argues that the search for a theory of quantum gravity stimulated the change in outlook that characterizes the modern approach to the standard model of particle physics and general relativity. We present some landmarks covering a long period, i.e., from the beginning of the 1930s until 1994, when, according to Steven Weinberg, the modern bottom–up approach to general relativity began. Starting from the first attempt to apply the quantum field theory techniques to quantize Einstein’s theory perturbatively, we explore its developments and interaction with the top–down approach encoded by string theory. In the last part of the paper, we focus on this last approach to describe the relationship between our modern understanding of string theory and effective field theory in today’s panorama. To this end, the non-historical part briefly explains the modern concepts of moduli stabilization and Swampland to understand another change in focus that explains the present framework where some string theorists move.</p></div>","PeriodicalId":791,"journal":{"name":"The European Physical Journal H","volume":"49 1","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2024-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The European Physical Journal H","FirstCategoryId":"4","ListUrlMain":"https://link.springer.com/article/10.1140/epjh/s13129-024-00069-4","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"HISTORY & PHILOSOPHY OF SCIENCE","Score":null,"Total":0}
引用次数: 0
Abstract
This paper analyzes the effective field theory perspective on modern physics through the lens of the quantum theory of gravitational interaction. The historical part argues that the search for a theory of quantum gravity stimulated the change in outlook that characterizes the modern approach to the standard model of particle physics and general relativity. We present some landmarks covering a long period, i.e., from the beginning of the 1930s until 1994, when, according to Steven Weinberg, the modern bottom–up approach to general relativity began. Starting from the first attempt to apply the quantum field theory techniques to quantize Einstein’s theory perturbatively, we explore its developments and interaction with the top–down approach encoded by string theory. In the last part of the paper, we focus on this last approach to describe the relationship between our modern understanding of string theory and effective field theory in today’s panorama. To this end, the non-historical part briefly explains the modern concepts of moduli stabilization and Swampland to understand another change in focus that explains the present framework where some string theorists move.
期刊介绍:
The purpose of this journal is to catalyse, foster, and disseminate an awareness and understanding of the historical development of ideas in contemporary physics, and more generally, ideas about how Nature works.
The scope explicitly includes:
- Contributions addressing the history of physics and of physical ideas and concepts, the interplay of physics and mathematics as well as the natural sciences, and the history and philosophy of sciences, together with discussions of experimental ideas and designs - inasmuch as they clearly relate, and preferably add, to the understanding of modern physics.
- Annotated and/or contextual translations of relevant foreign-language texts.
- Careful characterisations of old and/or abandoned ideas including past mistakes and false leads, thereby helping working physicists to assess how compelling contemporary ideas may turn out to be in future, i.e. with hindsight.