The European Physical Journal E最新文献

筛选
英文 中文
Optimal escapes in active matter 活性物质中的最佳逃逸
IF 1.8 4区 物理与天体物理
The European Physical Journal E Pub Date : 2024-01-28 DOI: 10.1140/epje/s10189-023-00402-7
Luca Angelani
{"title":"Optimal escapes in active matter","authors":"Luca Angelani","doi":"10.1140/epje/s10189-023-00402-7","DOIUrl":"10.1140/epje/s10189-023-00402-7","url":null,"abstract":"<p>The out-of-equilibrium character of active particles, responsible for accumulation at boundaries in confining domains, determines not-trivial effects when considering escape processes. Non-monotonous behavior of exit times with respect to tumbling rate (inverse of mean persistent time) appears, as a consequence of the competing processes of exploring the bulk and accumulate at boundaries. By using both 1D analytical results and 2D numerical simulations of run-and-tumble particles with different behaviours at boundaries, we scrutinize this very general phenomenon of active matter, evidencing the role of accumulation at walls for the existence of optimal tumbling rates for fast escapes.</p>","PeriodicalId":790,"journal":{"name":"The European Physical Journal E","volume":"47 1","pages":""},"PeriodicalIF":1.8,"publicationDate":"2024-01-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11222286/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139569456","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Vesicle condensation induced by synapsin: condensate size, geometry, and vesicle shape deformations 突触素诱导的囊泡凝聚:凝聚物的大小、几何形状和囊泡形状变形。
IF 1.8 4区 物理与天体物理
The European Physical Journal E Pub Date : 2024-01-25 DOI: 10.1140/epje/s10189-023-00404-5
Jette Alfken, Charlotte Neuhaus, András Major, Alyona Taskina, Christian Hoffmann, Marcelo Ganzella, Arsen Petrovic, David Zwicker, Rubén Fernández-Busnadiego, Reinhard Jahn, Dragomir Milovanovic, Tim Salditt
{"title":"Vesicle condensation induced by synapsin: condensate size, geometry, and vesicle shape deformations","authors":"Jette Alfken,&nbsp;Charlotte Neuhaus,&nbsp;András Major,&nbsp;Alyona Taskina,&nbsp;Christian Hoffmann,&nbsp;Marcelo Ganzella,&nbsp;Arsen Petrovic,&nbsp;David Zwicker,&nbsp;Rubén Fernández-Busnadiego,&nbsp;Reinhard Jahn,&nbsp;Dragomir Milovanovic,&nbsp;Tim Salditt","doi":"10.1140/epje/s10189-023-00404-5","DOIUrl":"10.1140/epje/s10189-023-00404-5","url":null,"abstract":"<p>We study the formation of vesicle condensates induced by the protein synapsin, as a cell-free model system mimicking vesicle pool formation in the synapse. The system can be considered as an example of liquid–liquid phase separation (LLPS) in biomolecular fluids, where one phase is a complex fluid itself consisting of vesicles and a protein network. We address the pertinent question why the LLPS is self-limiting and stops at a certain size, i.e., why macroscopic phase separation is prevented. Using fluorescence light microscopy, we observe different morphologies of the condensates (aggregates) depending on the protein-to-lipid ratio. Cryogenic electron microscopy then allows us to resolve individual vesicle positions and shapes in a condensate and notably the size and geometry of adhesion zones between vesicles. We hypothesize that the membrane tension induced by already formed adhesion zones then in turn limits the capability of vesicles to bind additional vesicles, resulting in a finite condensate size. In a simple numerical toy model we show that this effect can be accounted for by redistribution of effective binding particles on the vesicle surface, accounting for the synapsin-induced adhesion zone.</p>","PeriodicalId":790,"journal":{"name":"The European Physical Journal E","volume":"47 1","pages":""},"PeriodicalIF":1.8,"publicationDate":"2024-01-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11233366/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139545048","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Detachment forces during parallel-plate gap separation mediated by a simple yield-stress fluid 由简单屈服应力流体介导的平行板间隙分离过程中的脱离力。
IF 1.8 4区 物理与天体物理
The European Physical Journal E Pub Date : 2024-01-23 DOI: 10.1140/epje/s10189-023-00397-1
Vítor Hugo de Oliveira Pereira, Wilson Barros Jr.
{"title":"Detachment forces during parallel-plate gap separation mediated by a simple yield-stress fluid","authors":"Vítor Hugo de Oliveira Pereira,&nbsp;Wilson Barros Jr.","doi":"10.1140/epje/s10189-023-00397-1","DOIUrl":"10.1140/epje/s10189-023-00397-1","url":null,"abstract":"<p>In this work we have monitored the multiple stages of the normal traction force response of a yield-stress fluid confined between two circular parallel plates that are separated at constant velocity. At narrow initial gaps, the air–fluid interface suffers from the Saffman–Taylor instability, confirmed by visual inspection of fingering patterns imprinted on the fluid. At larger initial gaps, the fluid preserves the initially imposed circular symmetry of the confining plates, indicating the absence of instability. Due to the system characteristics and experimental environment, the multiple traction force contributions occurred in cascade, permitting us to isolate the adhesion responses associated with viscosity, capillarity, and yield stress. Employing a standard Herschel–Bulkley model, we assessed the scaling of the traction force in multiple regimes—specifically, evaluating the dependencies of the fingering to yield-stress transitions.</p>","PeriodicalId":790,"journal":{"name":"The European Physical Journal E","volume":"47 1","pages":""},"PeriodicalIF":1.8,"publicationDate":"2024-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139519198","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Scaling regimes for wormlike chains confined to cylindrical surfaces under tension 局限于圆柱表面的蠕虫链在张力作用下的缩放机制。
IF 1.8 4区 物理与天体物理
The European Physical Journal E Pub Date : 2024-01-22 DOI: 10.1140/epje/s10189-023-00384-6
Greg Morrison, D. Thirumalai
{"title":"Scaling regimes for wormlike chains confined to cylindrical surfaces under tension","authors":"Greg Morrison,&nbsp;D. Thirumalai","doi":"10.1140/epje/s10189-023-00384-6","DOIUrl":"10.1140/epje/s10189-023-00384-6","url":null,"abstract":"<div><p>We compute the free energy of confinement <span>(mathcal{{F}})</span> for a wormlike chain (WLC), with persistence length <span>(l_p)</span>, that is confined to the surface of a cylinder of radius <i>R</i> under an external tension <i>f</i> using a mean field variational approach. For long chains, we analytically determine the behavior of the chain in a variety of regimes, which are demarcated by the interplay of <span>(l_p)</span>, the Odijk deflection length (<span>(l_d=(R^2l_p)^{1/3})</span>), and the Pincus length (<span>(l_f = {k_BT}/{f})</span>, with <span>(k_BT)</span> being the thermal energy). The theory accurately reproduces the Odijk scaling for strongly confined chains at <span>(f=0)</span>, with <span>(mathcal{{F}}sim Ll_p^{-1/3}R^{-2/3})</span>. For moderate values of <i>f</i>, the Odijk scaling is discernible only when <span>({l_p}gg R)</span> for strongly confined chains. Confinement does not significantly alter the scaling of the mean extension for sufficiently high tension. The theory is used to estimate unwrapping forces for DNA from nucleosomes.</p></div>","PeriodicalId":790,"journal":{"name":"The European Physical Journal E","volume":"47 1","pages":""},"PeriodicalIF":1.8,"publicationDate":"2024-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139511408","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Correction: Convective mixing in porous media: a review of Darcy, pore-scale and Hele-Shaw studies 更正:多孔介质中的对流混合:达西、孔隙尺度和赫勒-肖研究综述。
IF 1.8 4区 物理与天体物理
The European Physical Journal E Pub Date : 2024-01-11 DOI: 10.1140/epje/s10189-023-00401-8
Marco De Paoli
{"title":"Correction: Convective mixing in porous media: a review of Darcy, pore-scale and Hele-Shaw studies","authors":"Marco De Paoli","doi":"10.1140/epje/s10189-023-00401-8","DOIUrl":"10.1140/epje/s10189-023-00401-8","url":null,"abstract":"","PeriodicalId":790,"journal":{"name":"The European Physical Journal E","volume":"47 1","pages":""},"PeriodicalIF":1.8,"publicationDate":"2024-01-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1140/epje/s10189-023-00401-8.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139416059","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Ions and dipoles in electric field: nonlinear polarization and field-dependent chemical reaction 电场中的离子和偶极子:非线性极化和随电场变化的化学反应。
IF 1.8 4区 物理与天体物理
The European Physical Journal E Pub Date : 2024-01-11 DOI: 10.1140/epje/s10189-023-00398-0
Akira Onuki
{"title":"Ions and dipoles in electric field: nonlinear polarization and field-dependent chemical reaction","authors":"Akira Onuki","doi":"10.1140/epje/s10189-023-00398-0","DOIUrl":"10.1140/epje/s10189-023-00398-0","url":null,"abstract":"<p>We investigate electric-field effects in dilute electrolytes with nonlinear polarization. As a first example of such systems, we add a dipolar component with a relatively large dipole moment <span>(mu _0)</span> to an aqueous electrolyte. As a second example, the solvent itself exhibits nonlinear polarization near charged objects. For such systems, we present a Ginzburg-Landau free energy and introduce field-dependent chemical potentials, entropy density, and stress tensor, which satisfy general thermodynamic relations. In the first example, the dipoles accumulate in high-field regions, as predicted by Abrashikin <i>et al</i>.[Phys.Rev.Lett. <b>99</b>, 077801 (2007)]. Finally, we consider the case, where Bjerrum ion pairs form a dipolar component with nonlinear polarization. The Bjerrum dipoles accumulate in high-field regions, while field-induced dissociation was predicted by Onsager [J. Chem. Phys.<b>2</b>, 599 (1934)]. We present an expression for the field-dependent association constant <i>K</i>(<i>E</i>), which depends on the field strength nonmonotonically.</p>","PeriodicalId":790,"journal":{"name":"The European Physical Journal E","volume":"47 1","pages":""},"PeriodicalIF":1.8,"publicationDate":"2024-01-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139416060","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Physical insights into biological memory using phospholipid membranes 利用磷脂膜对生物记忆的物理洞察。
IF 1.8 4区 物理与天体物理
The European Physical Journal E Pub Date : 2024-01-11 DOI: 10.1140/epje/s10189-023-00391-7
Dima Bolmatov, C. Patrick Collier, John Katsaras, Maxim O. Lavrentovich
{"title":"Physical insights into biological memory using phospholipid membranes","authors":"Dima Bolmatov,&nbsp;C. Patrick Collier,&nbsp;John Katsaras,&nbsp;Maxim O. Lavrentovich","doi":"10.1140/epje/s10189-023-00391-7","DOIUrl":"10.1140/epje/s10189-023-00391-7","url":null,"abstract":"<p>Electrical signals may propagate along neuronal membranes in the brain, thus enabling communication between nerve cells. In doing so, lipid bilayers, fundamental scaffolds of all cell membranes, deform and restructure in response to such electrical activity. These changes impact the electromechanical properties of the membrane, which then physically store biological memory. This memory can exist either over a short or long period of time. Traditionally, biological memory is defined by the strengthening or weakening of transmissions between individual neurons. Here, we show that electrical stimulation may also alter the properties of the lipid membrane, thus pointing toward a novel mechanism for memory storage. Furthermore, based on the analysis of existing electrophysiological data, we study molecular mechanisms underlying the long-term potentiation in phospholipid membranes. Finally, we examine possible relationships between the memory capacitive properties of lipid membranes, neuronal learning, and memory.\u0000</p>","PeriodicalId":790,"journal":{"name":"The European Physical Journal E","volume":"47 1","pages":""},"PeriodicalIF":1.8,"publicationDate":"2024-01-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139416062","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Multispherical shapes of vesicles with intramembrane domains 具有膜内结构域的多球形囊泡。
IF 1.8 4区 物理与天体物理
The European Physical Journal E Pub Date : 2024-01-11 DOI: 10.1140/epje/s10189-023-00399-z
Reinhard Lipowsky
{"title":"Multispherical shapes of vesicles with intramembrane domains","authors":"Reinhard Lipowsky","doi":"10.1140/epje/s10189-023-00399-z","DOIUrl":"10.1140/epje/s10189-023-00399-z","url":null,"abstract":"<p>Phase separation of biomembranes into two fluid phases, <i>a</i> and <i>b</i>, leads to the formation of vesicles with intramembrane <i>a</i>- and <i>b</i>-domains. These vesicles can attain multispherical shapes consisting of several spheres connected by closed membrane necks. Here, we study the morphological complexity of these multispheres using the theory of curvature elasticity. Vesicles with two domains form two-sphere shapes, consisting of one <i>a</i>- and one <i>b</i>-sphere, connected by a closed <i>ab</i>-neck. The necks’ effective mean curvature is used to distinguish positive from negative necks. Two-sphere shapes of two-domain vesicles can attain four different morphologies that are governed by two different stability conditions. The closed <i>ab</i>-necks are compressed by constriction forces which induce neck fission and vesicle division for large line tensions and/or large spontaneous curvatures. Multispherical shapes with one <i>ab</i>-neck and additional <i>aa</i>- and <i>bb</i>-necks involve several stability conditions, which act to reduce the stability regimes of the multispheres. Furthermore, vesicles with more than two domains form multispheres with more than one <i>ab</i>-neck. The multispherical shapes described here represent generalized constant-mean-curvature surfaces with up to four constant mean curvatures. These shapes are accessible to experimental studies using available methods for giant vesicles prepared from ternary lipid mixtures.</p>","PeriodicalId":790,"journal":{"name":"The European Physical Journal E","volume":"47 1","pages":""},"PeriodicalIF":1.8,"publicationDate":"2024-01-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1140/epje/s10189-023-00399-z.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139416061","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A continuum mechanics model of the plant cell wall reveals interplay between enzyme action and cell wall structure 植物细胞壁连续介质力学模型揭示了酶作用与细胞壁结构之间的相互作用。
IF 1.8 4区 物理与天体物理
The European Physical Journal E Pub Date : 2024-01-06 DOI: 10.1140/epje/s10189-023-00396-2
Euan T. Smithers, Jingxi Luo, Rosemary J. Dyson
{"title":"A continuum mechanics model of the plant cell wall reveals interplay between enzyme action and cell wall structure","authors":"Euan T. Smithers,&nbsp;Jingxi Luo,&nbsp;Rosemary J. Dyson","doi":"10.1140/epje/s10189-023-00396-2","DOIUrl":"10.1140/epje/s10189-023-00396-2","url":null,"abstract":"<p>Plant cell growth is regulated through manipulation of the cell wall network, which consists of oriented cellulose microfibrils embedded within a ground matrix incorporating pectin and hemicellulose components. There remain many unknowns as to how this manipulation occurs. Experiments have shown that cellulose reorients in cell walls as the cell expands, while recent data suggest that growth is controlled by distinct collections of hemicellulose called biomechanical hotspots, which join the cellulose molecule together. The enzymes expansin and Cel12A have both been shown to induce growth of the cell wall; however, while Cel12A’s wall-loosening action leads to a reduction in the cell wall strength, expansin’s has been shown to increase the strength of the cell wall. In contrast, members of the XTH enzyme family hydrolyse hemicellulose but do not appear to cause wall creep. This experimentally observed behaviour still awaits a full explanation. We derive and analyse a mathematical model for the effective mechanical properties of the evolving cell wall network, incorporating cellulose microfibrils, which reorient with cell growth and are linked via biomechanical hotspots made up of regions of crosslinking hemicellulose. Assuming a visco-elastic response for the cell wall and using a continuum approach, we calculate the total stress resultant of the cell wall for a given overall growth rate. By changing appropriate parameters affecting breakage rate and viscous properties, we provide evidence for the biomechanical hotspot hypothesis and develop mechanistic understanding of the growth-inducing enzymes.</p>","PeriodicalId":790,"journal":{"name":"The European Physical Journal E","volume":"47 1","pages":""},"PeriodicalIF":1.8,"publicationDate":"2024-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1140/epje/s10189-023-00396-2.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139110591","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Motility and swimming: universal description and generic trajectories 运动和游泳:通用描述和通用轨迹。
IF 1.8 4区 物理与天体物理
The European Physical Journal E Pub Date : 2023-12-26 DOI: 10.1140/epje/s10189-023-00395-3
Alexander Farutin, Suhail M. Rizvi, Wei-Fan Hu, Te-Sheng Lin, Salima Rafai, Chaouqi Misbah
{"title":"Motility and swimming: universal description and generic trajectories","authors":"Alexander Farutin,&nbsp;Suhail M. Rizvi,&nbsp;Wei-Fan Hu,&nbsp;Te-Sheng Lin,&nbsp;Salima Rafai,&nbsp;Chaouqi Misbah","doi":"10.1140/epje/s10189-023-00395-3","DOIUrl":"10.1140/epje/s10189-023-00395-3","url":null,"abstract":"<p>Autonomous locomotion is a ubiquitous phenomenon in biology and in physics of active systems at microscopic scale. This includes prokaryotic, eukaryotic cells (crawling and swimming) and artificial swimmers. An outstanding feature is the ability of these entities to follow complex trajectories, ranging from straight, curved (circular, helical...), to random-like ones. The non-straight nature of these trajectories is often explained as a consequence of the asymmetry of the particle or the medium in which it moves, or due to the presence of bounding walls, etc... Here, we show that for a particle driven by a concentration field of an active species, straight, circular and helical trajectories emerge naturally in the absence of asymmetry of the particle or that of suspending medium. Our proof is based on general considerations, without referring to an explicit form of a model. We show that these three trajectories correspond to self-congruent solutions. Self-congruency means that the states of the system at different moments of time can be made identical by an appropriate combination of rotation and translation of the coordinate space. We show that these solutions are exhibited by spherically symmetric particles as a result of a series of pitchfork bifurcations, leading to spontaneous symmetry breaking in the concentration field driving the particle motility. Self-congruent dynamics in one and two dimensions are analyzed as well. Finally, we present a simple explicit nonlinear exactly solvable model of fully isotropic phoretic particle that shows the transitions from a non-motile state to straight motion to circular motion to helical motion as a series of spontaneous symmetry-breaking bifurcations. Whether a system exhibits or not a given trajectory only depends on the numerical values of parameters entering the model, while asymmetry of swimmer shape, or anisotropy of the suspending medium, or influence of bounding walls are not necessary.</p>","PeriodicalId":790,"journal":{"name":"The European Physical Journal E","volume":"46 12","pages":""},"PeriodicalIF":1.8,"publicationDate":"2023-12-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139037280","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信