The European Physical Journal E最新文献

筛选
英文 中文
Ions and dipoles in electric field: nonlinear polarization and field-dependent chemical reaction 电场中的离子和偶极子:非线性极化和随电场变化的化学反应。
IF 1.8 4区 物理与天体物理
The European Physical Journal E Pub Date : 2024-01-11 DOI: 10.1140/epje/s10189-023-00398-0
Akira Onuki
{"title":"Ions and dipoles in electric field: nonlinear polarization and field-dependent chemical reaction","authors":"Akira Onuki","doi":"10.1140/epje/s10189-023-00398-0","DOIUrl":"10.1140/epje/s10189-023-00398-0","url":null,"abstract":"<p>We investigate electric-field effects in dilute electrolytes with nonlinear polarization. As a first example of such systems, we add a dipolar component with a relatively large dipole moment <span>(mu _0)</span> to an aqueous electrolyte. As a second example, the solvent itself exhibits nonlinear polarization near charged objects. For such systems, we present a Ginzburg-Landau free energy and introduce field-dependent chemical potentials, entropy density, and stress tensor, which satisfy general thermodynamic relations. In the first example, the dipoles accumulate in high-field regions, as predicted by Abrashikin <i>et al</i>.[Phys.Rev.Lett. <b>99</b>, 077801 (2007)]. Finally, we consider the case, where Bjerrum ion pairs form a dipolar component with nonlinear polarization. The Bjerrum dipoles accumulate in high-field regions, while field-induced dissociation was predicted by Onsager [J. Chem. Phys.<b>2</b>, 599 (1934)]. We present an expression for the field-dependent association constant <i>K</i>(<i>E</i>), which depends on the field strength nonmonotonically.</p>","PeriodicalId":790,"journal":{"name":"The European Physical Journal E","volume":"47 1","pages":""},"PeriodicalIF":1.8,"publicationDate":"2024-01-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139416060","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Physical insights into biological memory using phospholipid membranes 利用磷脂膜对生物记忆的物理洞察。
IF 1.8 4区 物理与天体物理
The European Physical Journal E Pub Date : 2024-01-11 DOI: 10.1140/epje/s10189-023-00391-7
Dima Bolmatov, C. Patrick Collier, John Katsaras, Maxim O. Lavrentovich
{"title":"Physical insights into biological memory using phospholipid membranes","authors":"Dima Bolmatov,&nbsp;C. Patrick Collier,&nbsp;John Katsaras,&nbsp;Maxim O. Lavrentovich","doi":"10.1140/epje/s10189-023-00391-7","DOIUrl":"10.1140/epje/s10189-023-00391-7","url":null,"abstract":"<p>Electrical signals may propagate along neuronal membranes in the brain, thus enabling communication between nerve cells. In doing so, lipid bilayers, fundamental scaffolds of all cell membranes, deform and restructure in response to such electrical activity. These changes impact the electromechanical properties of the membrane, which then physically store biological memory. This memory can exist either over a short or long period of time. Traditionally, biological memory is defined by the strengthening or weakening of transmissions between individual neurons. Here, we show that electrical stimulation may also alter the properties of the lipid membrane, thus pointing toward a novel mechanism for memory storage. Furthermore, based on the analysis of existing electrophysiological data, we study molecular mechanisms underlying the long-term potentiation in phospholipid membranes. Finally, we examine possible relationships between the memory capacitive properties of lipid membranes, neuronal learning, and memory.\u0000</p>","PeriodicalId":790,"journal":{"name":"The European Physical Journal E","volume":"47 1","pages":""},"PeriodicalIF":1.8,"publicationDate":"2024-01-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139416062","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Multispherical shapes of vesicles with intramembrane domains 具有膜内结构域的多球形囊泡。
IF 1.8 4区 物理与天体物理
The European Physical Journal E Pub Date : 2024-01-11 DOI: 10.1140/epje/s10189-023-00399-z
Reinhard Lipowsky
{"title":"Multispherical shapes of vesicles with intramembrane domains","authors":"Reinhard Lipowsky","doi":"10.1140/epje/s10189-023-00399-z","DOIUrl":"10.1140/epje/s10189-023-00399-z","url":null,"abstract":"<p>Phase separation of biomembranes into two fluid phases, <i>a</i> and <i>b</i>, leads to the formation of vesicles with intramembrane <i>a</i>- and <i>b</i>-domains. These vesicles can attain multispherical shapes consisting of several spheres connected by closed membrane necks. Here, we study the morphological complexity of these multispheres using the theory of curvature elasticity. Vesicles with two domains form two-sphere shapes, consisting of one <i>a</i>- and one <i>b</i>-sphere, connected by a closed <i>ab</i>-neck. The necks’ effective mean curvature is used to distinguish positive from negative necks. Two-sphere shapes of two-domain vesicles can attain four different morphologies that are governed by two different stability conditions. The closed <i>ab</i>-necks are compressed by constriction forces which induce neck fission and vesicle division for large line tensions and/or large spontaneous curvatures. Multispherical shapes with one <i>ab</i>-neck and additional <i>aa</i>- and <i>bb</i>-necks involve several stability conditions, which act to reduce the stability regimes of the multispheres. Furthermore, vesicles with more than two domains form multispheres with more than one <i>ab</i>-neck. The multispherical shapes described here represent generalized constant-mean-curvature surfaces with up to four constant mean curvatures. These shapes are accessible to experimental studies using available methods for giant vesicles prepared from ternary lipid mixtures.</p>","PeriodicalId":790,"journal":{"name":"The European Physical Journal E","volume":"47 1","pages":""},"PeriodicalIF":1.8,"publicationDate":"2024-01-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1140/epje/s10189-023-00399-z.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139416061","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A continuum mechanics model of the plant cell wall reveals interplay between enzyme action and cell wall structure 植物细胞壁连续介质力学模型揭示了酶作用与细胞壁结构之间的相互作用。
IF 1.8 4区 物理与天体物理
The European Physical Journal E Pub Date : 2024-01-06 DOI: 10.1140/epje/s10189-023-00396-2
Euan T. Smithers, Jingxi Luo, Rosemary J. Dyson
{"title":"A continuum mechanics model of the plant cell wall reveals interplay between enzyme action and cell wall structure","authors":"Euan T. Smithers,&nbsp;Jingxi Luo,&nbsp;Rosemary J. Dyson","doi":"10.1140/epje/s10189-023-00396-2","DOIUrl":"10.1140/epje/s10189-023-00396-2","url":null,"abstract":"<p>Plant cell growth is regulated through manipulation of the cell wall network, which consists of oriented cellulose microfibrils embedded within a ground matrix incorporating pectin and hemicellulose components. There remain many unknowns as to how this manipulation occurs. Experiments have shown that cellulose reorients in cell walls as the cell expands, while recent data suggest that growth is controlled by distinct collections of hemicellulose called biomechanical hotspots, which join the cellulose molecule together. The enzymes expansin and Cel12A have both been shown to induce growth of the cell wall; however, while Cel12A’s wall-loosening action leads to a reduction in the cell wall strength, expansin’s has been shown to increase the strength of the cell wall. In contrast, members of the XTH enzyme family hydrolyse hemicellulose but do not appear to cause wall creep. This experimentally observed behaviour still awaits a full explanation. We derive and analyse a mathematical model for the effective mechanical properties of the evolving cell wall network, incorporating cellulose microfibrils, which reorient with cell growth and are linked via biomechanical hotspots made up of regions of crosslinking hemicellulose. Assuming a visco-elastic response for the cell wall and using a continuum approach, we calculate the total stress resultant of the cell wall for a given overall growth rate. By changing appropriate parameters affecting breakage rate and viscous properties, we provide evidence for the biomechanical hotspot hypothesis and develop mechanistic understanding of the growth-inducing enzymes.</p>","PeriodicalId":790,"journal":{"name":"The European Physical Journal E","volume":"47 1","pages":""},"PeriodicalIF":1.8,"publicationDate":"2024-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1140/epje/s10189-023-00396-2.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139110591","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Motility and swimming: universal description and generic trajectories 运动和游泳:通用描述和通用轨迹。
IF 1.8 4区 物理与天体物理
The European Physical Journal E Pub Date : 2023-12-26 DOI: 10.1140/epje/s10189-023-00395-3
Alexander Farutin, Suhail M. Rizvi, Wei-Fan Hu, Te-Sheng Lin, Salima Rafai, Chaouqi Misbah
{"title":"Motility and swimming: universal description and generic trajectories","authors":"Alexander Farutin,&nbsp;Suhail M. Rizvi,&nbsp;Wei-Fan Hu,&nbsp;Te-Sheng Lin,&nbsp;Salima Rafai,&nbsp;Chaouqi Misbah","doi":"10.1140/epje/s10189-023-00395-3","DOIUrl":"10.1140/epje/s10189-023-00395-3","url":null,"abstract":"<p>Autonomous locomotion is a ubiquitous phenomenon in biology and in physics of active systems at microscopic scale. This includes prokaryotic, eukaryotic cells (crawling and swimming) and artificial swimmers. An outstanding feature is the ability of these entities to follow complex trajectories, ranging from straight, curved (circular, helical...), to random-like ones. The non-straight nature of these trajectories is often explained as a consequence of the asymmetry of the particle or the medium in which it moves, or due to the presence of bounding walls, etc... Here, we show that for a particle driven by a concentration field of an active species, straight, circular and helical trajectories emerge naturally in the absence of asymmetry of the particle or that of suspending medium. Our proof is based on general considerations, without referring to an explicit form of a model. We show that these three trajectories correspond to self-congruent solutions. Self-congruency means that the states of the system at different moments of time can be made identical by an appropriate combination of rotation and translation of the coordinate space. We show that these solutions are exhibited by spherically symmetric particles as a result of a series of pitchfork bifurcations, leading to spontaneous symmetry breaking in the concentration field driving the particle motility. Self-congruent dynamics in one and two dimensions are analyzed as well. Finally, we present a simple explicit nonlinear exactly solvable model of fully isotropic phoretic particle that shows the transitions from a non-motile state to straight motion to circular motion to helical motion as a series of spontaneous symmetry-breaking bifurcations. Whether a system exhibits or not a given trajectory only depends on the numerical values of parameters entering the model, while asymmetry of swimmer shape, or anisotropy of the suspending medium, or influence of bounding walls are not necessary.</p>","PeriodicalId":790,"journal":{"name":"The European Physical Journal E","volume":"46 12","pages":""},"PeriodicalIF":1.8,"publicationDate":"2023-12-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139037280","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Non-specific cargo–filament interactions slow down motor-driven transport 非特异性的货物-纤维相互作用会减慢马达驱动的运输速度
IF 1.8 4区 物理与天体物理
The European Physical Journal E Pub Date : 2023-12-21 DOI: 10.1140/epje/s10189-023-00394-4
Joelle A. Labastide, David A. Quint, Reilly K. Cullen, Bryan Maelfeyt, Jennifer L. Ross, Ajay Gopinathan
{"title":"Non-specific cargo–filament interactions slow down motor-driven transport","authors":"Joelle A. Labastide,&nbsp;David A. Quint,&nbsp;Reilly K. Cullen,&nbsp;Bryan Maelfeyt,&nbsp;Jennifer L. Ross,&nbsp;Ajay Gopinathan","doi":"10.1140/epje/s10189-023-00394-4","DOIUrl":"10.1140/epje/s10189-023-00394-4","url":null,"abstract":"<div><p>Active, motor-based cargo transport is important for many cellular functions and cellular development. However, the cell interior is complex and crowded and could have many weak, non-specific interactions with the cargo being transported. To understand how cargo-environment interactions will affect single motor cargo transport and multi-motor cargo transport, we use an artificial quantum dot cargo bound with few (~ 1) to many (~ 5–10) motors allowed to move in a dense microtubule network. We find that kinesin-driven quantum dot cargo is slower than single kinesin-1 motors. Excitingly, there is some recovery of the speed when multiple motors are attached to the cargo. To determine the possible mechanisms of both the slow down and recovery of speed, we have developed a computational model that explicitly incorporates multi-motor cargos interacting non-specifically with nearby microtubules, including, and predominantly with the microtubule on which the cargo is being transported. Our model has recovered the experimentally measured average cargo speed distribution for cargo-motor configurations with few and many motors, implying that numerous, weak, non-specific interactions can slow down cargo transport and multiple motors can reduce these interactions thereby increasing velocity.</p><h3>Graphic abstract</h3>\u0000<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":790,"journal":{"name":"The European Physical Journal E","volume":"46 12","pages":""},"PeriodicalIF":1.8,"publicationDate":"2023-12-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138823997","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Instanton-based importance sampling for extreme fluctuations in a shell model for turbulent energy cascade 基于瞬时重要性采样的湍流能量级联壳模型中的极端波动。
IF 1.8 4区 物理与天体物理
The European Physical Journal E Pub Date : 2023-12-21 DOI: 10.1140/epje/s10189-023-00392-6
Guilherme Tegoni Goedert, Luca Biferale
{"title":"Instanton-based importance sampling for extreme fluctuations in a shell model for turbulent energy cascade","authors":"Guilherme Tegoni Goedert,&nbsp;Luca Biferale","doi":"10.1140/epje/s10189-023-00392-6","DOIUrl":"10.1140/epje/s10189-023-00392-6","url":null,"abstract":"<p>Many out-of-equilibrium flows present non-Gaussian fluctuations in physically relevant observables, such as energy dissipation rate. This implies extreme fluctuations that, although rarely observed, have a significant phenomenology. Recently, path integral methods for importance sampling have emerged from formalism initially devised for quantum field theory and are being successfully applied to the Burgers equation and other fluid models. We proposed exploring the domain of application of these methods using a shell model, a dynamical system for turbulent energy cascade which can be numerically sampled for extreme events in an efficient manner and presents many interesting properties. We start from a validation of the instanton-based importance sampling methodology in the heat equation limit. We explored the limits of the method as nonlinearity grows stronger, finding good qualitative results for small values of the leading nonlinear coefficient. A worst agreement between numerical simulations of the whole systems and instanton results for estimation of the distribution’s flatness is observed when increasing the nonlinear intensities.\u0000</p>","PeriodicalId":790,"journal":{"name":"The European Physical Journal E","volume":"46 12","pages":""},"PeriodicalIF":1.8,"publicationDate":"2023-12-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138827608","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Electrostatics and hydrophobicity in the dynamics of intrinsically disordered proteins 本质无序蛋白质动力学中的静电和疏水性
IF 1.8 4区 物理与天体物理
The European Physical Journal E Pub Date : 2023-12-21 DOI: 10.1140/epje/s10189-023-00383-7
Renee Vancraenenbroeck, Hagen Hofmann
{"title":"Electrostatics and hydrophobicity in the dynamics of intrinsically disordered proteins","authors":"Renee Vancraenenbroeck,&nbsp;Hagen Hofmann","doi":"10.1140/epje/s10189-023-00383-7","DOIUrl":"10.1140/epje/s10189-023-00383-7","url":null,"abstract":"<div><p>Internal friction is a major contribution to the dynamics of intrinsically disordered proteins (IDPs). Yet, the molecular origin of internal friction has so far been elusive. Here, we investigate whether attractive electrostatic interactions in IDPs modulate internal friction differently than the hydrophobic effect. To this end, we used nanosecond fluorescence correlation spectroscopy (nsFCS) and single-molecule Förster resonance energy transfer (FRET) to quantify the conformation and dynamics of the disordered DNA-binding domains Myc, Max and Mad at different salt concentrations. We find that internal friction effects are stronger when the chain is compacted by electrostatic attractions compared to the hydrophobic effect. Although the effect is moderate, the results show that the heteropolymeric nature of IDPs is reflected in their dynamics.</p><h3>Graphical abstract</h3><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":790,"journal":{"name":"The European Physical Journal E","volume":"46 12","pages":""},"PeriodicalIF":1.8,"publicationDate":"2023-12-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1140/epje/s10189-023-00383-7.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138823889","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Hopf bifurcation control of macroscopic traffic flow model considering vehicle braking effect 考虑车辆制动效应的宏观交通流模型的霍普夫分岔控制
IF 1.8 4区 物理与天体物理
The European Physical Journal E Pub Date : 2023-12-20 DOI: 10.1140/epje/s10189-023-00393-5
WenHuan Ai, MingMing Wang, DaWei Liu
{"title":"Hopf bifurcation control of macroscopic traffic flow model considering vehicle braking effect","authors":"WenHuan Ai,&nbsp;MingMing Wang,&nbsp;DaWei Liu","doi":"10.1140/epje/s10189-023-00393-5","DOIUrl":"10.1140/epje/s10189-023-00393-5","url":null,"abstract":"<div><p>Traffic congestion not only has a great impact on people's travel, but also increases energy consumption and air pollution. The control analysis of the macroscopic traffic flow model considering the vehicle braking effect is particularly important, reflecting the impact on the actual traffic flow density wave, so as to better solve the actual traffic problems. In this paper, based on a speed difference optimization speed model, the micro–macro-variables are transformed into a high-order continuous traffic flow model. Then, a random function considering the physical correlation of random components is added to the high-order continuous traffic flow model to establish a random traffic flow model that can reflect the uncertain behavior of traffic flow acceleration or deceleration. Based on this stochastic traffic model, the existence of Hopf bifurcation and bifurcation control of the traffic flow system model considering stochastic characteristics are derived by using Hopf bifurcation theorem. By Chebyshev polynomial approximation method, the stochastic problem of the system is transformed into the bifurcation control problem of its equivalent deterministic system. A feedback controller is designed to delay the occurrence of Hopf bifurcation and control the amplitude of the limit cycle. Without changing the equilibrium point of the system, the complete elimination of Hopf bifurcation can be achieved by controlling the amplitude of the limit cycle. That is, the feedback controller is used to modify the bifurcation characteristics of the system, such as the bifurcation appearing at the equilibrium point in the control system moves forward, moves backward or disappears, so as to achieve the effect of preventing or alleviating traffic congestion.</p><h3>Graphical abstract</h3>\u0000<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":790,"journal":{"name":"The European Physical Journal E","volume":"46 12","pages":""},"PeriodicalIF":1.8,"publicationDate":"2023-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138796221","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Observation of non-equilibrium fluctuation in the shear-stress-driven hemoglobin aggregates 在剪切应力驱动的血红蛋白聚集体中观察到非平衡波动
IF 1.8 4区 物理与天体物理
The European Physical Journal E Pub Date : 2023-12-20 DOI: 10.1140/epje/s10189-023-00389-1
A. Kabiraj, G. Mallik, P. P. Dash, P. Kumari, M. Bandyopadhyay, S. Rath
{"title":"Observation of non-equilibrium fluctuation in the shear-stress-driven hemoglobin aggregates","authors":"A. Kabiraj,&nbsp;G. Mallik,&nbsp;P. P. Dash,&nbsp;P. Kumari,&nbsp;M. Bandyopadhyay,&nbsp;S. Rath","doi":"10.1140/epje/s10189-023-00389-1","DOIUrl":"10.1140/epje/s10189-023-00389-1","url":null,"abstract":"<div><p>Non-equilibrium fluctuations caused by the rearrangement of hemoglobin molecules into an aggregate state under shear stress have been investigated experimentally. The flow response under the shear stress (<i>σ</i>) corroborates the presence of contrasting aggregate and rejuvenation states governed by entropy production and consumption events. From the time-dependent shear rate fluctuation studies of aggregate states, the probability distribution function (PDF) of the rate of work done is observed to be spread from negative to positive values with a net positive mean. The PDFs follow the steady-state fluctuation theorem, even at a smaller timescale than that desired by the theorem. The behavior of the effective temperature (<i>T</i><sub>eff</sub>) that emerges from a non-equilibrium fluctuation and interconnects with the structural restrictions of the aggregate state of our driven system is observed to be within the boundary of the thermodynamic uncertainty. The increase in <i>T</i><sub>eff</sub> with the applied <i>σ</i> illustrates a phenomenal nonlinear power flux-dependent aggregating behavior in a classic bio-molecular-driven system.</p><h3>Graphical abstract</h3><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":790,"journal":{"name":"The European Physical Journal E","volume":"46 12","pages":""},"PeriodicalIF":1.8,"publicationDate":"2023-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138816573","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信