{"title":"Characterization of dynamic interplay among different channels during immiscible displacement in porous media under different flow rates","authors":"Yusong Xu, Yingxue Hu, Kaixin Chen, Yuanqing Liu, Jiangang Liu, Weiwei Hao, Tianjiang Wu, Chuanqing Huang, Junwei Su","doi":"10.1140/epje/s10189-024-00463-2","DOIUrl":null,"url":null,"abstract":"<div><p>Although immiscible displacement in porous media has been extensively studied, a more comprehensive analysis of the underlying dynamic behaviors is still necessary. In this work, we conducted experimental and theoretical analyses on the dynamic interplay among channels during immiscible displacement under varying flow rates. In a rock-structured microfluidic chip, we observed typical displacement patterns, including viscous fingering and capillary fingering, and analyzed their frontiers and efficiencies. Interestingly, we discovered a novel 'V'-shaped recovery rate pattern, which differs from the monotonic curve considered in previous research. The recovery rate reaches its lowest point at an injection rate of 1 μL/min (42%), increasing to 55 and 65% at rates of 16 and 0.1 μL/min, respectively. This increase may attribute to all-directional displacement at lower rates and multi-fingering displacement at higher rates, contrasting with primary fingering displacement observed at intermediate rates. Furthermore, we developed a dual-tube model to investigate the dynamic mechanisms between adjacent channels during the displacement process. At high injection rates, an increase in low-viscosity fluid rapidly reduces overall average viscosity of the channels, accelerating displacement while hindering the displacement process in neighboring channels. Conversely, at low injection rates, increased capillary forces at pore-throat junctions delay breakthrough in one channel, promoting simultaneous displacement in parallel channels and ensuring stability. These findings significantly enhance our understanding of the interplay between viscous and capillary forces in porous media during displacement processes.</p><h3>Graphical abstract</h3>\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":790,"journal":{"name":"The European Physical Journal E","volume":"47 12","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2024-12-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The European Physical Journal E","FirstCategoryId":"4","ListUrlMain":"https://link.springer.com/article/10.1140/epje/s10189-024-00463-2","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Although immiscible displacement in porous media has been extensively studied, a more comprehensive analysis of the underlying dynamic behaviors is still necessary. In this work, we conducted experimental and theoretical analyses on the dynamic interplay among channels during immiscible displacement under varying flow rates. In a rock-structured microfluidic chip, we observed typical displacement patterns, including viscous fingering and capillary fingering, and analyzed their frontiers and efficiencies. Interestingly, we discovered a novel 'V'-shaped recovery rate pattern, which differs from the monotonic curve considered in previous research. The recovery rate reaches its lowest point at an injection rate of 1 μL/min (42%), increasing to 55 and 65% at rates of 16 and 0.1 μL/min, respectively. This increase may attribute to all-directional displacement at lower rates and multi-fingering displacement at higher rates, contrasting with primary fingering displacement observed at intermediate rates. Furthermore, we developed a dual-tube model to investigate the dynamic mechanisms between adjacent channels during the displacement process. At high injection rates, an increase in low-viscosity fluid rapidly reduces overall average viscosity of the channels, accelerating displacement while hindering the displacement process in neighboring channels. Conversely, at low injection rates, increased capillary forces at pore-throat junctions delay breakthrough in one channel, promoting simultaneous displacement in parallel channels and ensuring stability. These findings significantly enhance our understanding of the interplay between viscous and capillary forces in porous media during displacement processes.
期刊介绍:
EPJ E publishes papers describing advances in the understanding of physical aspects of Soft, Liquid and Living Systems.
Soft matter is a generic term for a large group of condensed, often heterogeneous systems -- often also called complex fluids -- that display a large response to weak external perturbations and that possess properties governed by slow internal dynamics.
Flowing matter refers to all systems that can actually flow, from simple to multiphase liquids, from foams to granular matter.
Living matter concerns the new physics that emerges from novel insights into the properties and behaviours of living systems. Furthermore, it aims at developing new concepts and quantitative approaches for the study of biological phenomena. Approaches from soft matter physics and statistical physics play a key role in this research.
The journal includes reports of experimental, computational and theoretical studies and appeals to the broad interdisciplinary communities including physics, chemistry, biology, mathematics and materials science.