Francesco Michele Ventrella, Guido Boffetta, Massimo Cencini, Filippo De Lillo
{"title":"直泳和环泳运动员建模:从单泳到集体运动","authors":"Francesco Michele Ventrella, Guido Boffetta, Massimo Cencini, Filippo De Lillo","doi":"10.1140/epje/s10189-024-00458-z","DOIUrl":null,"url":null,"abstract":"<p>We propose a simple numerical model for the motion of microswimmers based on the immersed boundary method. The swimmer, either pusher or puller, is represented by a distribution of point forces corresponding to the body and the flagellum. We study in particular the minimal model consisting of only three beads (two for the body and one for the flagellum) connected by rigid, inextensible links. When the beads are collinear, standard straight swimming is realized and, in the absence of propulsion, we demonstrate that the model recovers Jeffery’s equation for a thin rod. Conversely, by imposing an angle between body and flagellum the swimmer moves on circular orbits. We discuss how two swimmers, in collinear or non-collinear geometry, scatter upon encounter. Finally, we explore the dynamics of a large number of swimmers reacting to one another only via hydrodynamic interactions, and exemplify their complex collective dynamics in both straight and circular swimmers.</p>","PeriodicalId":790,"journal":{"name":"The European Physical Journal E","volume":"47 11","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2024-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Modeling straight and circle swimmers: from single swimmer to collective motion\",\"authors\":\"Francesco Michele Ventrella, Guido Boffetta, Massimo Cencini, Filippo De Lillo\",\"doi\":\"10.1140/epje/s10189-024-00458-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We propose a simple numerical model for the motion of microswimmers based on the immersed boundary method. The swimmer, either pusher or puller, is represented by a distribution of point forces corresponding to the body and the flagellum. We study in particular the minimal model consisting of only three beads (two for the body and one for the flagellum) connected by rigid, inextensible links. When the beads are collinear, standard straight swimming is realized and, in the absence of propulsion, we demonstrate that the model recovers Jeffery’s equation for a thin rod. Conversely, by imposing an angle between body and flagellum the swimmer moves on circular orbits. We discuss how two swimmers, in collinear or non-collinear geometry, scatter upon encounter. Finally, we explore the dynamics of a large number of swimmers reacting to one another only via hydrodynamic interactions, and exemplify their complex collective dynamics in both straight and circular swimmers.</p>\",\"PeriodicalId\":790,\"journal\":{\"name\":\"The European Physical Journal E\",\"volume\":\"47 11\",\"pages\":\"\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2024-11-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The European Physical Journal E\",\"FirstCategoryId\":\"4\",\"ListUrlMain\":\"https://link.springer.com/article/10.1140/epje/s10189-024-00458-z\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The European Physical Journal E","FirstCategoryId":"4","ListUrlMain":"https://link.springer.com/article/10.1140/epje/s10189-024-00458-z","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Modeling straight and circle swimmers: from single swimmer to collective motion
We propose a simple numerical model for the motion of microswimmers based on the immersed boundary method. The swimmer, either pusher or puller, is represented by a distribution of point forces corresponding to the body and the flagellum. We study in particular the minimal model consisting of only three beads (two for the body and one for the flagellum) connected by rigid, inextensible links. When the beads are collinear, standard straight swimming is realized and, in the absence of propulsion, we demonstrate that the model recovers Jeffery’s equation for a thin rod. Conversely, by imposing an angle between body and flagellum the swimmer moves on circular orbits. We discuss how two swimmers, in collinear or non-collinear geometry, scatter upon encounter. Finally, we explore the dynamics of a large number of swimmers reacting to one another only via hydrodynamic interactions, and exemplify their complex collective dynamics in both straight and circular swimmers.
期刊介绍:
EPJ E publishes papers describing advances in the understanding of physical aspects of Soft, Liquid and Living Systems.
Soft matter is a generic term for a large group of condensed, often heterogeneous systems -- often also called complex fluids -- that display a large response to weak external perturbations and that possess properties governed by slow internal dynamics.
Flowing matter refers to all systems that can actually flow, from simple to multiphase liquids, from foams to granular matter.
Living matter concerns the new physics that emerges from novel insights into the properties and behaviours of living systems. Furthermore, it aims at developing new concepts and quantitative approaches for the study of biological phenomena. Approaches from soft matter physics and statistical physics play a key role in this research.
The journal includes reports of experimental, computational and theoretical studies and appeals to the broad interdisciplinary communities including physics, chemistry, biology, mathematics and materials science.