{"title":"Insertion of anionic synthetic clay in lamellar surfactant phases","authors":"Isabelle Grillo, Sylvain Prévost, Thomas Zemb","doi":"10.1140/epje/s10189-024-00447-2","DOIUrl":"10.1140/epje/s10189-024-00447-2","url":null,"abstract":"<p>We describe the different mixed colloidal solutions that can be obtained when mixing equivalent quantities of a synthetic anionic clay to surfactants forming lamellar phases in the absence of added salt. The important quantity driving toward insertion or depletion is the osmotic pressure, of the lamellar phase and of the clay alone. Competition for water is the main driving force toward dispersion, inclusion or exclusion (phase separation). In the case of a nonionic surfactant (<span>(hbox {C}_{12}hbox {E}_{5})</span>) mixed with Laponite, undulations quenched by the surfactant-decorated clay lead to swelling; inclusion is not observed due to differences in rigidity. Long-range order is weakened leading eventually to the exclusion of surfactant in excess. In the case of a double anionic system (AOT-Laponite), electrostatic is dominant and the three regimes are encountered. In the catanionic case, admixing the double chain cationic lipid DDAB to the clay (in large charge excess), the platelets are coated by a positively charged bilayer. Long-range order is very efficiently dampened. From a low threshold (2% by weight), there is exclusion of a clay-poor collapsed lamellar phase, detected by the swelling of the main phase. The cationized clay does not interfere with the molecular force balance: the location of the critical point is unchanged. At high Laponite concentration, a very puzzling microstructure is observed. Some phase diagrams as well as representative SANS and SAXS data are extracted from the complete results concerning the lyotropic lamellar phase mixing problem available with all measures and evaluations of osmotic pressures in the PhD of the late Isabelle Grillo.</p><p>Binary surfactant–water systems often form lamellar phases with spacing and osmotic pressure imposed by molecular interactions, while clay forms sols, gels and flocs with smectic order. The question addressed here is: <i>“which mechanism is dominant in the center of the ternary phase diagram?”</i> </p>","PeriodicalId":790,"journal":{"name":"The European Physical Journal E","volume":"47 9","pages":""},"PeriodicalIF":1.8,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142216469","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Antiferromagnetic liquid-crystal suspensions of goethite nanorods: three mechanisms of magnetic field influence on orientational structure","authors":"Danil A. Petrov, Ilya A. Chupeev","doi":"10.1140/epje/s10189-024-00448-1","DOIUrl":"10.1140/epje/s10189-024-00448-1","url":null,"abstract":"<p>The study looks into magnetically induced orientational transitions in suspensions of goethite nanorods based on a nematic liquid crystal. The study considers magnetically compensated suspension, which is a liquid-crystal analogue of an antiferromagnet. Unlike conventional magnetic particles, goethite nanorods have a remanent magnetic moment directed along the long axis of the particle and also they have negative diamagnetic anisotropy. Thus, it can be claimed that liquid-crystal composites of goethite nanorods have three mechanisms of interaction with an external magnetic field. The first two mechanisms are originally quadrupolar and are related to diamagnetic susceptibility anisotropies of liquid-crystal matrix and impurity goethite nanorods. The third mechanism is a dipolar one and is due to a remanent longitudinal magnetic moment of each dispersed particle. The magnetic-field-induced birefringence is used to show that the presence of three competing orientational mechanisms of interaction with an external magnetic field can both increase and decrease the Fréedericksz transition threshold compared to a pure liquid crystal. Diagrams of orientational phases of the suspension were constructed, and cases of various orientational mechanism predominance were analysed. Besides, a representation of the free energy of the suspension near the Fréedericksz transition in the form of the Landau expansion was obtained. This made it possible to establish that the Fréedericksz transition can occur as a phase transition of both the first and second order.</p>","PeriodicalId":790,"journal":{"name":"The European Physical Journal E","volume":"47 8","pages":""},"PeriodicalIF":1.8,"publicationDate":"2024-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141970347","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"On pressure-driven Poiseuille flow with non-monotonic rheology","authors":"L. Talon, D. Salin","doi":"10.1140/epje/s10189-024-00444-5","DOIUrl":"10.1140/epje/s10189-024-00444-5","url":null,"abstract":"<p>Shear thickening fluids are liquids that stiffen as the applied stress increases. If many of these types of fluids follow a monotonic rheological curve, some experimental and numerical studies suggest that certain fluids, like cornstarch, may exhibit a non-monotonic, S-shaped rheology. Such non-monotonic behavior has however proved very difficult to observe experimentally in classical rheometer. To explain such difficulties, the possible presence of vorticity banding in the rheometer has been considered. To prevent such instabilities, we use a capillary rheometer, which is a cylindrical tube, measuring the flow rate versus the applied pressure drop. With this setup, we indeed observe a non-monotonic behavior: the flow rate increases monotonically at low pressure drops up to a maximum, after which it abruptly decreases to an almost constant flow rate regardless of further increases in pressure drop. This maximum-jump–plateau behavior occurs over a wide range of concentrations and is reproducible without hysteresis, which is in agreement with an S-shaped rheology. However, the obtained flow versus pressure difference function <span>(Q(Delta P))</span> does not agree with the classical Wyart–Cates rheological model, which predicts an S-shaped non-monotonic function, but with neither a jump nor a plateau. To understand this jump–plateau behavior, we remark that any rheological model would establish a relationship between the flow rate and the local pressure gradient, but not the total pressure drop. We thus discuss and analyze the implications of having an S-shaped non-monotonic flow rate-pressure gradient in Poiseuille flow. In particular, we discuss the possibility of a non-uniform pressure gradient in the direction of the flow, i.e., a kind of streamwise banding. The key issue is then the selection of the gradient pressure distribution along the tube. One solution could arise from an analogy of this problem with the spinodal decomposition. It, however, leads to an increase in flow rate with <span>(partial _xP)</span> up to a plateau between two values of <span>(partial _xP)</span> as determined by the Maxwell construction. To account for the bump–jump behavior, we have implemented a simple dynamical stochastic version of the Wyart–Cates model, where the thickening occurs with a characteristic time. As a result, with increasing the total pressure drop, the flow rate increases monotonically up to a maximum value. Beyond this point, the flow rate drops abruptly to a lower value, forming a slowly decreasing plateau. This behavior is likely to account for the maximum-jump–plateau observed in the experiments. We also show that in such a system, the final state is quite sensitive to the initial state of the fluid, especially its homogeneity. Our results then demonstrate that the mere presence of a non-monotonic rheological curve is sufficient to predict the occurrence of stress banding in the streamwise direction and a plateau flow rate, even if the s","PeriodicalId":790,"journal":{"name":"The European Physical Journal E","volume":"47 8","pages":""},"PeriodicalIF":1.8,"publicationDate":"2024-08-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141888109","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Micheal Arockiaraj, A. Berin Greeni, A. R. Abul Kalaam, Tariq Aziz, Metab Alharbi
{"title":"Mathematical modeling for prediction of physicochemical characteristics of cardiovascular drugs via modified reverse degree topological indices","authors":"Micheal Arockiaraj, A. Berin Greeni, A. R. Abul Kalaam, Tariq Aziz, Metab Alharbi","doi":"10.1140/epje/s10189-024-00446-3","DOIUrl":"10.1140/epje/s10189-024-00446-3","url":null,"abstract":"<p>Global health concerns persist due to the multifaceted nature of heart diseases, which include lifestyle choices, genetic predispositions, and emerging post-COVID complications like myocarditis and pericarditis. This broadens the spectrum of cardiovascular ailments to encompass conditions such as coronary artery disease, heart failure, arrhythmias, and valvular disorders. Timely interventions, including lifestyle modifications and regular medications such as antiplatelets, beta-blockers, angiotensin-converting enzyme inhibitors, antiarrhythmics, and vasodilators, are pivotal in managing these conditions. In drug development, topological indices play a critical role, offering cost-effective computational and predictive tools. This study explores modified reverse degree topological indices, highlighting their adjustable parameters that actively shape the degree sequences of molecular drugs. This feature makes the approach suitable for datasets with unique physicochemical properties, distinguishing it from traditional methods that rely on fixed degree approaches. In our investigation, we examine a dataset of 30 drug compounds, including sotagliflozin, dapagliflozin, dobutamine, etc., which are used in the treatment of cardiovascular diseases. Through the structural analysis, we utilize modified reverse degree indices to develop quantitative structure–property relationship (QSPR) models, aiming to unveil essential understandings of their characteristics for drug development. Furthermore, we compare our QSPR models against the degree-based models, clearly demonstrating the superior effectiveness inherent in our proposed method.</p>","PeriodicalId":790,"journal":{"name":"The European Physical Journal E","volume":"47 8","pages":""},"PeriodicalIF":1.8,"publicationDate":"2024-08-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141888108","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Effect of bottom bumpiness of vibrated closed container on granular dissipation behavior","authors":"Wenzhe Li, Kai Zhang, Fugui Sun, Meng Chen","doi":"10.1140/epje/s10189-024-00443-6","DOIUrl":"10.1140/epje/s10189-024-00443-6","url":null,"abstract":"<div><p>The dissipation behavior of granular balls inside quasi-two-dimensional closed containers with different levels of bottom bumpiness under vibration is examined in this article using the discrete element method. The quasi-two-dimensional closed granular system used in this paper has dimensions of <span>(L_{x} times L_{y} times L_{z} = 60,{text{mm}} times 5,{text{mm}} times 120,{text{mm}})</span>, and the diameters of the 279 filled granular balls are 4 mm. First, the dynamic behavior and damping effects of granular balls within a flat-bottomed closed container are explored across the range of relevant excitation parameters, identifying four high damping granular phases. Second, this study investigated the impact of the container's bottom surface bumpiness, convex height, and number of bumps on the dissipative behavior of internal granular balls. The findings reveal that a single 2 mm bump on the container's bottom surface maximally enhances the damping effect on the granular balls. Finally, by comparing the optimal damping behavior of granular balls inside a flat-bottomed container with that of a container featuring a single 2 mm bump at the bottom, this study revealed how the protruding bottom surface enhances the damping effect on the granular balls inside the container. This provides theoretical support for optimizing the performance of granular dampers in engineering practice by controlling the morphology of the cavity bottom surface.</p><h3>Graphical abstract</h3><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":790,"journal":{"name":"The European Physical Journal E","volume":"47 7","pages":""},"PeriodicalIF":1.8,"publicationDate":"2024-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141787033","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"The role of epistasis in evolutionary rescue","authors":"Osmar Freitas, Paulo R. A. Campos","doi":"10.1140/epje/s10189-024-00445-4","DOIUrl":"10.1140/epje/s10189-024-00445-4","url":null,"abstract":"<p>The process by which adaptive evolution preserves a population threatened with extinction due to environmental changes is known as evolutionary rescue. Several factors determine the fate of those populations, including demography and genetic factors, such as standing genetic variation, gene flow, availability of <i>de novo mutations</i>, and so on. Despite the extensive debate about evolutionary rescue in the current literature, a study about the role of epistasis and the topography of the fitness landscape on the fate of dwindling populations is missing. In the current work, we aim to fill this gap and study the influence of epistasis on the probability of extinction of populations. We present simulation results, and analytical approximations are derived. Counterintuitively, we show that the likelihood of extinction is smaller when the degree of epistasis is higher. The reason underneath is twofold: first, higher epistasis can promote mutations of more significant phenotypic effects, but also, the incongruence between the maps genotype–phenotype and phenotype–fitness turns the fitness landscape at low epistasis more rugged, thus curbing some of its advantages.</p>","PeriodicalId":790,"journal":{"name":"The European Physical Journal E","volume":"47 7","pages":""},"PeriodicalIF":1.8,"publicationDate":"2024-07-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141775894","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Molecular structure of DNA via Zagreb connection descriptors","authors":"Muhammad Mudassar Hassan, Xiang-Feng Pan","doi":"10.1140/epje/s10189-024-00442-7","DOIUrl":"10.1140/epje/s10189-024-00442-7","url":null,"abstract":"<p>Topological indices quantify the connectivity and structural properties of chemical compounds. We use the topological indices for predicting and evaluating the numerous properties of molecules, such as boiling temperatures, toxicity, and biological activity. Zagreb connection indices are a useful tool for studying the structural characteristics of the DNA backbone network. These indices provide important information on the arrangement and connections between nucleotide bases inside the DNA molecule. These indices show compactness, complexity, and topological properties in order to predict DNA bending propensity, DNA-protein interaction, and DNA stability. DNA folding patterns and the impact of mutations on DNA networks are areas of further research for these topological indices. In this study, we calculate Zagreb connection indices and modified Zagreb connection indices for backbone DNA network and subdivided backbone DNA network. Furthermore, we compute the hyper-Zagreb connection index, the inverse sum connection index, and the harmonic connection index.</p>","PeriodicalId":790,"journal":{"name":"The European Physical Journal E","volume":"47 7","pages":""},"PeriodicalIF":1.8,"publicationDate":"2024-07-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141776026","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Nematodynamics with odd and rotational viscosities","authors":"L. M. Pismen","doi":"10.1140/epje/s10189-024-00441-8","DOIUrl":"10.1140/epje/s10189-024-00441-8","url":null,"abstract":"<div><p>We explore a novel mechanism of interactions between nematic order and flow including odd and rotational viscosities, and investigate activity-induced instabilities in the framework of this model. We show how these modes of viscous dissipation can be incorporated in the Ericksen–Leslie formalism, but it does not eliminate deficiencies of the approach based on Onsager’s reciprocal relations that lead to spurious instabilities. The suggested way of deriving nematodynamic equations, based on a specific mechanism applicable to rigid rods, is not universal, but it avoids referring to Onsager’s relations and avoids spurious instabilities in the absence of an active inputs. The model is further applied to the analysis of instabilities in active media</p></div>","PeriodicalId":790,"journal":{"name":"The European Physical Journal E","volume":"47 7","pages":""},"PeriodicalIF":1.8,"publicationDate":"2024-07-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1140/epje/s10189-024-00441-8.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141775895","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Modelling intracellular transport in crowded environments: effects of motor association to cargos","authors":"Sutapa Mukherji, Dhruvi K. Patel","doi":"10.1140/epje/s10189-024-00440-9","DOIUrl":"10.1140/epje/s10189-024-00440-9","url":null,"abstract":"<p>In intracellular transports, motor proteins transport macromolecules as cargos to desired locations by moving on biopolymers such as microtubules. Recent experiments suggest that, while moving in crowded environments, cargos that can associate motor proteins during their translocation have larger run-length and association time compared to free motors. Here, we model the dynamics of a cargo that can associate at the most <i>m</i> free motors present on the microtubule track as obstacles to its motion. The proposed models display competing effects of association and crowding, leading to a peak in the run-length with the free-motor density. For <span>(m=2)</span> and 3, we show that this feature is governed by the largest eigenvalue of the transition matrix describing the cargo dynamics. In all the above cases, free motors are assumed to be present on the microtubule as stalled obstacles. We finally compare simulation results for the run-length for general scenarios where the free motors undergo processive motion in addition to binding and unbinding to or from the microtubule.</p>","PeriodicalId":790,"journal":{"name":"The European Physical Journal E","volume":"47 7","pages":""},"PeriodicalIF":1.8,"publicationDate":"2024-07-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141603108","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Effect of internal structure and resin deformability on drying rate and stress in convective drying of silica–latex coatings","authors":"Hiroaki Tanaka, Yoshiyuki Komoda, Takafumi Horie, Naoto Ohmura","doi":"10.1140/epje/s10189-024-00432-9","DOIUrl":"10.1140/epje/s10189-024-00432-9","url":null,"abstract":"<div><p>Latex paint is an aqueous dispersion of nano-sized polymer particles that can form a thin film by itself or mixed with rigid particles. We have developed an apparatus that can simultaneously measure drying rate and stress generation and have investigated the film formation process of a latex-only coating layer under convection drying. In the present study, we adopted the same method to investigate the film formation process of the silica–latex coating layer. As a result, we were able to systematically correlate the drying rate change by the equivalent thickness of latex particles accumulated with silica particles at the drying surface. Furthermore, it is unveiled that the drying rate in the former stage depends on drying temperature, while the drying rate changed to be dominated by silica content after the particle-packing layer was formed over the entire coating layer. On the other hand, the model we proposed for stress generation, considering the temperature effect on latex deformability, was found to be applicable to the present experimental system by replacing a portion of deformable particles with rigid particles.</p><h3>Graphical abstract</h3><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":790,"journal":{"name":"The European Physical Journal E","volume":"47 7","pages":""},"PeriodicalIF":1.8,"publicationDate":"2024-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11224093/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141533307","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}