{"title":"稳定铁电液晶的聚合物网络的线性介电光谱。","authors":"Mohammed Hanine, Abdelylah Daoudi, Jamal Hemine","doi":"10.1140/epje/s10189-025-00504-4","DOIUrl":null,"url":null,"abstract":"<div><p>In this study, the linear dielectric characterization of a ferroelectric liquid crystal (FLC) stabilized by an anisotropic polymer network (PSFLC) was investigated. The liquid crystal employed in the PSFLC composites exhibited the chiral smectic C phase (SmC*), with a short helical pitch, a high tilt angle, and a high degree of spontaneous polarization. Dielectric spectroscopy was preceded by polarizing optical microscopy, as well as structural and electro-optical studies on pure FLC and PSFLC composites at different polymer concentrations. These studies enabled the determination of the pitch of the helix, the tilt angle, and the spontaneous polarization as a function of temperature and electric field. In the absence of a DC voltage, the dielectric response indicated the relaxation of the Goldstone mode as well as a reduction in tilt angle, spontaneous polarization and relaxation amplitude as the polymer density increased. By integrating the experimental data with the Landau model, the physical parameters, including the torsional elastic constant and rotational viscosity, were identified for pure FLC and PSFLC films. In addition, the impact of polymer density on these physical parameters was explored.</p><h3>Graphic Abstract</h3>\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":790,"journal":{"name":"The European Physical Journal E","volume":"48 8-9","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2025-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Linear dielectric spectroscopy of a polymer network stabilizing a ferroelectric liquid crystal\",\"authors\":\"Mohammed Hanine, Abdelylah Daoudi, Jamal Hemine\",\"doi\":\"10.1140/epje/s10189-025-00504-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this study, the linear dielectric characterization of a ferroelectric liquid crystal (FLC) stabilized by an anisotropic polymer network (PSFLC) was investigated. The liquid crystal employed in the PSFLC composites exhibited the chiral smectic C phase (SmC*), with a short helical pitch, a high tilt angle, and a high degree of spontaneous polarization. Dielectric spectroscopy was preceded by polarizing optical microscopy, as well as structural and electro-optical studies on pure FLC and PSFLC composites at different polymer concentrations. These studies enabled the determination of the pitch of the helix, the tilt angle, and the spontaneous polarization as a function of temperature and electric field. In the absence of a DC voltage, the dielectric response indicated the relaxation of the Goldstone mode as well as a reduction in tilt angle, spontaneous polarization and relaxation amplitude as the polymer density increased. By integrating the experimental data with the Landau model, the physical parameters, including the torsional elastic constant and rotational viscosity, were identified for pure FLC and PSFLC films. In addition, the impact of polymer density on these physical parameters was explored.</p><h3>Graphic Abstract</h3>\\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>\",\"PeriodicalId\":790,\"journal\":{\"name\":\"The European Physical Journal E\",\"volume\":\"48 8-9\",\"pages\":\"\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2025-08-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The European Physical Journal E\",\"FirstCategoryId\":\"4\",\"ListUrlMain\":\"https://link.springer.com/article/10.1140/epje/s10189-025-00504-4\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The European Physical Journal E","FirstCategoryId":"4","ListUrlMain":"https://link.springer.com/article/10.1140/epje/s10189-025-00504-4","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Linear dielectric spectroscopy of a polymer network stabilizing a ferroelectric liquid crystal
In this study, the linear dielectric characterization of a ferroelectric liquid crystal (FLC) stabilized by an anisotropic polymer network (PSFLC) was investigated. The liquid crystal employed in the PSFLC composites exhibited the chiral smectic C phase (SmC*), with a short helical pitch, a high tilt angle, and a high degree of spontaneous polarization. Dielectric spectroscopy was preceded by polarizing optical microscopy, as well as structural and electro-optical studies on pure FLC and PSFLC composites at different polymer concentrations. These studies enabled the determination of the pitch of the helix, the tilt angle, and the spontaneous polarization as a function of temperature and electric field. In the absence of a DC voltage, the dielectric response indicated the relaxation of the Goldstone mode as well as a reduction in tilt angle, spontaneous polarization and relaxation amplitude as the polymer density increased. By integrating the experimental data with the Landau model, the physical parameters, including the torsional elastic constant and rotational viscosity, were identified for pure FLC and PSFLC films. In addition, the impact of polymer density on these physical parameters was explored.
期刊介绍:
EPJ E publishes papers describing advances in the understanding of physical aspects of Soft, Liquid and Living Systems.
Soft matter is a generic term for a large group of condensed, often heterogeneous systems -- often also called complex fluids -- that display a large response to weak external perturbations and that possess properties governed by slow internal dynamics.
Flowing matter refers to all systems that can actually flow, from simple to multiphase liquids, from foams to granular matter.
Living matter concerns the new physics that emerges from novel insights into the properties and behaviours of living systems. Furthermore, it aims at developing new concepts and quantitative approaches for the study of biological phenomena. Approaches from soft matter physics and statistical physics play a key role in this research.
The journal includes reports of experimental, computational and theoretical studies and appeals to the broad interdisciplinary communities including physics, chemistry, biology, mathematics and materials science.