活性物质体系中自诱导Marangoni流对极向列波的影响。

IF 2.2 4区 物理与天体物理 Q4 CHEMISTRY, PHYSICAL
Andrey Pototsky, Uwe Thiele
{"title":"活性物质体系中自诱导Marangoni流对极向列波的影响。","authors":"Andrey Pototsky,&nbsp;Uwe Thiele","doi":"10.1140/epje/s10189-025-00508-0","DOIUrl":null,"url":null,"abstract":"<p> We study the formation of propagating large-scale density waves of mixed polar-nematic symmetry in a colony of self-propelled agents that are bound to move along the planar surface of a thin viscous film. The agents act as an insoluble surfactant, i.e. the surface tension of the liquid depends on their density. Therefore, density gradients generate a Marangoni flow. We demonstrate that for active matter in the form of self-propelled surfactants with local (nematic) aligning interactions such a Marangoni flow nontrivially influences the propagation of the density waves. Upon gradually increasing the Marangoni parameter, which characterises the relative strength of the Marangoni flow as compared to the self-propulsion speed, the density waves broaden while their speed may either increase or decrease depending on wavelength and overall mean density. A further increase in the Marangoni parameter eventually results in the disappearance of the density waves. This may occur either discontinuously at finite wave amplitude via a saddle-node bifurcation or continuously with vanishing wave amplitude at a wave bifurcation, i.e. a finite-wavelength Hopf bifurcation.</p>","PeriodicalId":790,"journal":{"name":"The European Physical Journal E","volume":"48 8-9","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2025-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12310849/pdf/","citationCount":"0","resultStr":"{\"title\":\"The effect of self-induced Marangoni flow on polar-nematic waves in active-matter systems\",\"authors\":\"Andrey Pototsky,&nbsp;Uwe Thiele\",\"doi\":\"10.1140/epje/s10189-025-00508-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p> We study the formation of propagating large-scale density waves of mixed polar-nematic symmetry in a colony of self-propelled agents that are bound to move along the planar surface of a thin viscous film. The agents act as an insoluble surfactant, i.e. the surface tension of the liquid depends on their density. Therefore, density gradients generate a Marangoni flow. We demonstrate that for active matter in the form of self-propelled surfactants with local (nematic) aligning interactions such a Marangoni flow nontrivially influences the propagation of the density waves. Upon gradually increasing the Marangoni parameter, which characterises the relative strength of the Marangoni flow as compared to the self-propulsion speed, the density waves broaden while their speed may either increase or decrease depending on wavelength and overall mean density. A further increase in the Marangoni parameter eventually results in the disappearance of the density waves. This may occur either discontinuously at finite wave amplitude via a saddle-node bifurcation or continuously with vanishing wave amplitude at a wave bifurcation, i.e. a finite-wavelength Hopf bifurcation.</p>\",\"PeriodicalId\":790,\"journal\":{\"name\":\"The European Physical Journal E\",\"volume\":\"48 8-9\",\"pages\":\"\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2025-07-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12310849/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The European Physical Journal E\",\"FirstCategoryId\":\"4\",\"ListUrlMain\":\"https://link.springer.com/article/10.1140/epje/s10189-025-00508-0\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The European Physical Journal E","FirstCategoryId":"4","ListUrlMain":"https://link.springer.com/article/10.1140/epje/s10189-025-00508-0","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

我们研究了在一群沿黏性薄膜表面运动的自推进体中混合极向列对称大尺度密度波的形成。这些试剂起着不溶性表面活性剂的作用,即液体的表面张力取决于它们的密度。因此,密度梯度产生马兰戈尼流。我们证明,对于具有局部(向列)对齐相互作用的自驱动表面活性剂形式的活性物质,如马兰戈尼流对密度波的传播有重要影响。随着马兰戈尼参数(表征马兰戈尼流相对于自推进速度的相对强度)的逐渐增大,密度波会变宽,而其速度会根据波长和总体平均密度的不同而增加或减少。马兰戈尼参数的进一步增大最终导致密度波的消失。这可以通过鞍节点分岔在有限振幅处不连续发生,也可以在波分岔处连续发生,即有限波长Hopf分岔。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

The effect of self-induced Marangoni flow on polar-nematic waves in active-matter systems

The effect of self-induced Marangoni flow on polar-nematic waves in active-matter systems

The effect of self-induced Marangoni flow on polar-nematic waves in active-matter systems

The effect of self-induced Marangoni flow on polar-nematic waves in active-matter systems

 We study the formation of propagating large-scale density waves of mixed polar-nematic symmetry in a colony of self-propelled agents that are bound to move along the planar surface of a thin viscous film. The agents act as an insoluble surfactant, i.e. the surface tension of the liquid depends on their density. Therefore, density gradients generate a Marangoni flow. We demonstrate that for active matter in the form of self-propelled surfactants with local (nematic) aligning interactions such a Marangoni flow nontrivially influences the propagation of the density waves. Upon gradually increasing the Marangoni parameter, which characterises the relative strength of the Marangoni flow as compared to the self-propulsion speed, the density waves broaden while their speed may either increase or decrease depending on wavelength and overall mean density. A further increase in the Marangoni parameter eventually results in the disappearance of the density waves. This may occur either discontinuously at finite wave amplitude via a saddle-node bifurcation or continuously with vanishing wave amplitude at a wave bifurcation, i.e. a finite-wavelength Hopf bifurcation.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
The European Physical Journal E
The European Physical Journal E CHEMISTRY, PHYSICAL-MATERIALS SCIENCE, MULTIDISCIPLINARY
CiteScore
2.60
自引率
5.60%
发文量
92
审稿时长
3 months
期刊介绍: EPJ E publishes papers describing advances in the understanding of physical aspects of Soft, Liquid and Living Systems. Soft matter is a generic term for a large group of condensed, often heterogeneous systems -- often also called complex fluids -- that display a large response to weak external perturbations and that possess properties governed by slow internal dynamics. Flowing matter refers to all systems that can actually flow, from simple to multiphase liquids, from foams to granular matter. Living matter concerns the new physics that emerges from novel insights into the properties and behaviours of living systems. Furthermore, it aims at developing new concepts and quantitative approaches for the study of biological phenomena. Approaches from soft matter physics and statistical physics play a key role in this research. The journal includes reports of experimental, computational and theoretical studies and appeals to the broad interdisciplinary communities including physics, chemistry, biology, mathematics and materials science.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信