{"title":"双鞭毛虫模型微游泳者的强化学习","authors":"Sridhar Bulusu, Andreas Zöttl","doi":"10.1140/epje/s10189-025-00513-3","DOIUrl":null,"url":null,"abstract":"<p>Many microswimmers are able to swim through viscous fluids by employing periodic non-reciprocal deformations of their appendages. Here we use a simple microswimmer model inspired by swimming biflagellates which consists of a spherical cell body and two small spherical beads representing the motion of the two flagella. Using reinforcement learning, we identify for different microswimmer morphologies quasi-optimized swimming strokes. For all studied cases, the identified strokes result in symmetric and quasi-synchronized beating of the two flagella beads. Interestingly, the stroke-averaged flow fields are of pusher type, and the observed swimming gaits outperform previously used biflagellate microswimmer models relying on predefined circular flagella-bead motion.</p>","PeriodicalId":790,"journal":{"name":"The European Physical Journal E","volume":"48 8-9","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2025-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1140/epje/s10189-025-00513-3.pdf","citationCount":"0","resultStr":"{\"title\":\"Reinforcement learning of a biflagellate model microswimmer\",\"authors\":\"Sridhar Bulusu, Andreas Zöttl\",\"doi\":\"10.1140/epje/s10189-025-00513-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Many microswimmers are able to swim through viscous fluids by employing periodic non-reciprocal deformations of their appendages. Here we use a simple microswimmer model inspired by swimming biflagellates which consists of a spherical cell body and two small spherical beads representing the motion of the two flagella. Using reinforcement learning, we identify for different microswimmer morphologies quasi-optimized swimming strokes. For all studied cases, the identified strokes result in symmetric and quasi-synchronized beating of the two flagella beads. Interestingly, the stroke-averaged flow fields are of pusher type, and the observed swimming gaits outperform previously used biflagellate microswimmer models relying on predefined circular flagella-bead motion.</p>\",\"PeriodicalId\":790,\"journal\":{\"name\":\"The European Physical Journal E\",\"volume\":\"48 8-9\",\"pages\":\"\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2025-08-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1140/epje/s10189-025-00513-3.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The European Physical Journal E\",\"FirstCategoryId\":\"4\",\"ListUrlMain\":\"https://link.springer.com/article/10.1140/epje/s10189-025-00513-3\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The European Physical Journal E","FirstCategoryId":"4","ListUrlMain":"https://link.springer.com/article/10.1140/epje/s10189-025-00513-3","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Reinforcement learning of a biflagellate model microswimmer
Many microswimmers are able to swim through viscous fluids by employing periodic non-reciprocal deformations of their appendages. Here we use a simple microswimmer model inspired by swimming biflagellates which consists of a spherical cell body and two small spherical beads representing the motion of the two flagella. Using reinforcement learning, we identify for different microswimmer morphologies quasi-optimized swimming strokes. For all studied cases, the identified strokes result in symmetric and quasi-synchronized beating of the two flagella beads. Interestingly, the stroke-averaged flow fields are of pusher type, and the observed swimming gaits outperform previously used biflagellate microswimmer models relying on predefined circular flagella-bead motion.
期刊介绍:
EPJ E publishes papers describing advances in the understanding of physical aspects of Soft, Liquid and Living Systems.
Soft matter is a generic term for a large group of condensed, often heterogeneous systems -- often also called complex fluids -- that display a large response to weak external perturbations and that possess properties governed by slow internal dynamics.
Flowing matter refers to all systems that can actually flow, from simple to multiphase liquids, from foams to granular matter.
Living matter concerns the new physics that emerges from novel insights into the properties and behaviours of living systems. Furthermore, it aims at developing new concepts and quantitative approaches for the study of biological phenomena. Approaches from soft matter physics and statistical physics play a key role in this research.
The journal includes reports of experimental, computational and theoretical studies and appeals to the broad interdisciplinary communities including physics, chemistry, biology, mathematics and materials science.