Algal Research-Biomass Biofuels and Bioproducts最新文献

筛选
英文 中文
Quality and safety of fresh Spirulina (Arthrospira platensis) maintained by bubbling plasma-activated air 通过气泡等离子激活空气保持新鲜螺旋藻(节藻)的质量和安全性
IF 4.6 2区 生物学
Algal Research-Biomass Biofuels and Bioproducts Pub Date : 2024-10-18 DOI: 10.1016/j.algal.2024.103754
Odgerel Bumandalai , Kirsty L. Bayliss , Navid R. Moheimani
{"title":"Quality and safety of fresh Spirulina (Arthrospira platensis) maintained by bubbling plasma-activated air","authors":"Odgerel Bumandalai ,&nbsp;Kirsty L. Bayliss ,&nbsp;Navid R. Moheimani","doi":"10.1016/j.algal.2024.103754","DOIUrl":"10.1016/j.algal.2024.103754","url":null,"abstract":"<div><div>Spirulina (<em>Arthrospira platensis</em>) is a blue-green alga valued for its protein, phycocyanin, and other bioactive compounds. However, its commercial outdoor cultivation makes it susceptible to microbial contamination, affecting both biomass productivity and quality. Additionally, most commercial Spirulina is sold in dried forms such as powder, flakes, and tablets, which can degrade these bioactive components. To address these issues, non-thermal techniques, such as cold plasma, offer a promising solution by effectively reducing microbial contamination while preserving product quality without the need for drying. This study investigated the potential of bubbling cold plasma-activated (BCPA) air through freshly grown Spirulina to reduce microbial contamination and maintain quality during storage. Spirulina grown in an outdoor paddle-wheel driven pond was harvested in paste form, resuspended in deionized water, treated with plasma-activated air and stored at 4 °C for 28 days. The treatment significantly reduced microbial contamination and maintained Spirulina biomass and pigment contents compared to untreated control. The cellular structure remained intact, and colour changes were minimal in the treated samples when compared to the controls. Moreover, the Spirulina suspension pH became acidic (pH = 4), and oxidation-reduction potential was significantly higher (&gt;150 mV) in treated samples compared to controls throughout the storage period. The results demonstrate the potential for BCPA air to maintain the quality of fresh Spirulina. This finding may have significant applications in the Spirulina industry for offering customers fresh products rather than dried Spirulina.</div></div>","PeriodicalId":7855,"journal":{"name":"Algal Research-Biomass Biofuels and Bioproducts","volume":"84 ","pages":"Article 103754"},"PeriodicalIF":4.6,"publicationDate":"2024-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142532325","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The response mechanism of alkalophilic Nitzschia sp. NW129 to low alkalinity-A study combining physiological and transcriptional analysis 嗜碱尼茨藻 NW129 对低碱度的响应机制--生理和转录分析相结合的研究
IF 4.6 2区 生物学
Algal Research-Biomass Biofuels and Bioproducts Pub Date : 2024-10-18 DOI: 10.1016/j.algal.2024.103748
Zihao Cao , Ruihao Zhang , Xiaotong Shen , Guanpin Yang , Baohua Zhu , Kehou Pan , Tengfei Xiao , Yun Li
{"title":"The response mechanism of alkalophilic Nitzschia sp. NW129 to low alkalinity-A study combining physiological and transcriptional analysis","authors":"Zihao Cao ,&nbsp;Ruihao Zhang ,&nbsp;Xiaotong Shen ,&nbsp;Guanpin Yang ,&nbsp;Baohua Zhu ,&nbsp;Kehou Pan ,&nbsp;Tengfei Xiao ,&nbsp;Yun Li","doi":"10.1016/j.algal.2024.103748","DOIUrl":"10.1016/j.algal.2024.103748","url":null,"abstract":"<div><div>Global aquatic acidification significantly threatens alkaline lake ecosystems. The mechanisms by which alkaliphilic microalgae, the key producers in these ecosystems, respond to reduced environmental alkalinity remain poorly understood. Here, we investigated the responses of alkalophilic <em>Nitzschia</em> sp. NW129 to low alkalinity (pH 9.2) through integrated physiological-biochemical and transcriptomic analyses. Relative to the control (pH 11.5), we observed a 60.1 % decrease in polysaccharide content, while total lipids and proteins increased by 1.74-fold and 2-fold, respectively. Transcriptome analysis revealed up-regulation of genes encoding carbonic anhydrase (CA) and malic enzyme (ME), along with those involved in glycolysis and fatty acid (FA) synthesis, compensating for carbon supply and shifting carbon flux from carbohydrate synthesis to lipid accumulation. Enhanced expression of TCA cycle genes and those encoding F-ATP synthase and inorganic pyrophosphatase (PPase) provided sufficient energy for cellular homeostasis, further facilitated by the up-regulated expression of ATP-dependent V-ATPase and ABC transporter genes. Temporal analysis revealed that the expression of genes involved in protein synthesis pathways was up-regulated on days 1 and 4 but notably down-regulated on day 2, suggesting protein degradation at this time to balance energy supply for adaptation. Despite these coping shifts, impairments in photosynthetic energy dissipation and electron transport, along with transcriptional changes including down-regulating cell cycle and inducing apoptotic pathways, ultimately caused a substantial reduction in biomass. These findings provide a basic understanding of the response mechanisms of alkalophilic microalgae to low alkalinity stress, which should aid to develop strategies to improve microalgal tolerance against acidification.</div></div>","PeriodicalId":7855,"journal":{"name":"Algal Research-Biomass Biofuels and Bioproducts","volume":"84 ","pages":"Article 103748"},"PeriodicalIF":4.6,"publicationDate":"2024-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142532327","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A reduced-order hybrid model for photobioreactor performance and biomass prediction 用于光生物反应器性能和生物量预测的降阶混合模型
IF 4.6 2区 生物学
Algal Research-Biomass Biofuels and Bioproducts Pub Date : 2024-10-18 DOI: 10.1016/j.algal.2024.103750
Shabnam Shahhoseyni, Lara Greco, Abhishek Sivaram, Seyed Soheil Mansouri
{"title":"A reduced-order hybrid model for photobioreactor performance and biomass prediction","authors":"Shabnam Shahhoseyni,&nbsp;Lara Greco,&nbsp;Abhishek Sivaram,&nbsp;Seyed Soheil Mansouri","doi":"10.1016/j.algal.2024.103750","DOIUrl":"10.1016/j.algal.2024.103750","url":null,"abstract":"<div><div>This paper introduces a hybrid approach for photobioreactor modeling tailored to microalgae cultivation, combining data-driven and mechanistic concepts to improve modeling efficiency and practicality for industrial scale-up applications. Most growth models for microalgae are nonlinear and require experimental measurement of several parameters. The aim of this work is to develop linear practical models for monitoring purposes. A model based on linear coefficients and polynomial features is proposed, balancing interpretability with non-linear representation focusing on model transparency. To simplify the growth model, Taylor series expansion is applied to the Monod and logistic population models. Two scale-specific models are developed and evaluated, offering practical solutions for monitoring microalgae growth in photobioreactors. Therefore, this reduced order representation allows the biomass growth rate to be dependent directly on the biomass concentration. These models do not require exhaustive data collection of substrate concentration over time, making them cost-effective and efficient for industrial applications. This work provides a step forward in photobioreactor modeling, contributing to the sustainable production of microalgae.</div></div>","PeriodicalId":7855,"journal":{"name":"Algal Research-Biomass Biofuels and Bioproducts","volume":"84 ","pages":"Article 103750"},"PeriodicalIF":4.6,"publicationDate":"2024-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142532390","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Dynamic behavior and transfer characteristics of CO2-enriched bubbles within Spirulina sp. suspension under various aeration conditions using the high-speed imaging technique 利用高速成像技术研究不同曝气条件下螺旋藻悬浮液中富含二氧化碳气泡的动态行为和转移特征
IF 4.6 2区 生物学
Algal Research-Biomass Biofuels and Bioproducts Pub Date : 2024-10-18 DOI: 10.1016/j.algal.2024.103758
Hongyan Ren , Mingwei Shen , Duan Zhou , Wei Wu , Yahui Sun , Kuan Shiong Khoo , Pau Loke Show
{"title":"Dynamic behavior and transfer characteristics of CO2-enriched bubbles within Spirulina sp. suspension under various aeration conditions using the high-speed imaging technique","authors":"Hongyan Ren ,&nbsp;Mingwei Shen ,&nbsp;Duan Zhou ,&nbsp;Wei Wu ,&nbsp;Yahui Sun ,&nbsp;Kuan Shiong Khoo ,&nbsp;Pau Loke Show","doi":"10.1016/j.algal.2024.103758","DOIUrl":"10.1016/j.algal.2024.103758","url":null,"abstract":"<div><div>The biological CO<sub>2</sub> fixation method through microalgae photosynthesis has received considerable attention to alleviate the trend of global warming. CO<sub>2</sub>-enriched gas is generally aerated into the microalgae suspension in the form of bubbles through the gas distributors. Dynamic behavior and transfer characteristics of CO<sub>2</sub>-enriched bubbles are crucial to microalgae cells growth and CO<sub>2</sub> bio-fixation. A visual experimental system based on the high-speed camera was constructed in this work to obtain the dynamic behavior and transfer characteristics of CO<sub>2</sub>-enriched bubbles within <em>Spirulina</em> sp. suspension. CO<sub>2</sub>-enriched bubbles movement and dissolution characteristics were comprehensively investigated under various CO<sub>2</sub> concentrations, gas distributor aperture size, aeration rates, and <em>Spirulina</em> sp. biomass densities. Experimental results indicate that the optimal CO<sub>2</sub> dissolution mass transfer and absorption rate were attained under the CO<sub>2</sub> concentration of 5 %, gas distributor aperture diameter of 10 μm, and aeration rate of 0.1–0.3 vvm. Moreover, as <em>Spirulina</em> sp. biomass density increased, the bubble average diameter decreased, and rising velocity slowed while the volumetric mass transfer coefficient and CO<sub>2</sub> absorption rate elevated. To summarize, this work may guide future efforts to enhance the photobioreactors (PBRs) performance from the perspective of aeration conditions optimization.</div></div>","PeriodicalId":7855,"journal":{"name":"Algal Research-Biomass Biofuels and Bioproducts","volume":"84 ","pages":"Article 103758"},"PeriodicalIF":4.6,"publicationDate":"2024-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142532512","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Effects of different culture media on growth, composition, quality and palatability of the green algae Ulva sp. cultivated in cylindrical photobioreactors 不同培养基对圆柱形光生物反应器中培养的绿藻莼菜的生长、成分、质量和适口性的影响
IF 4.6 2区 生物学
Algal Research-Biomass Biofuels and Bioproducts Pub Date : 2024-10-18 DOI: 10.1016/j.algal.2024.103749
Viviana Pasquini , Cecilia Biancacci , Massimo Milia , Davide Moccia , Paolo Solari , Alberto Angioni , Pierantonio Addis
{"title":"Effects of different culture media on growth, composition, quality and palatability of the green algae Ulva sp. cultivated in cylindrical photobioreactors","authors":"Viviana Pasquini ,&nbsp;Cecilia Biancacci ,&nbsp;Massimo Milia ,&nbsp;Davide Moccia ,&nbsp;Paolo Solari ,&nbsp;Alberto Angioni ,&nbsp;Pierantonio Addis","doi":"10.1016/j.algal.2024.103749","DOIUrl":"10.1016/j.algal.2024.103749","url":null,"abstract":"<div><div><em>Ulva</em> spp. are valuable seaweeds with recognized commercial applications, including food, feed, and ecosystem services. Ensuring a sustainable and consistent supply of biomass with desirable profiles aligned with intended uses is fundamental for the successful applications of this seaweed. In this study, the growth rate, morphology, physiology, and composition of <em>Ulva</em> sp. produced by propagation in indoor cylindrical photobioreactors using four different culture media (lagoon water - LW, lagoon water enriched with Guillard medium (LF), with sea urchin wastewater - LU, and cow digestate - LD) was assessed; moreover, the nutrient uptake potential of the species was evaluated. The palatability and attractivity of the produced biomass towards the sea urchin <em>Paracentrotus lividus</em> were investigated. It was found that the media influenced all the parameters examined, the LF biomass weight was double compared to the other treatments and showed a slightly higher absorbance. Colorimetric analyses reported a significant darker color in <em>Ulva</em> sp. grown under enriched media. <em>Ulva</em> sp. showed higher nutrient removal potential in LF. The lipid content did not vary (2–3 % dry weight, DW), while the protein content ranged from 21 % in LF to 6–9 % in the other treatments. Carbohydrates and fiber content were significantly lower in LF (16 % and 30 %) compared to the other treatments, 27–34 %, and 41–48 %, respectively. Pigment content significantly varied, being higher in biomass grown in LF and LU. Sea urchins showed preferences for biomass grown under LU, followed by LD. This study shows how different nutrient sources affect the biochemical composition, growth, quality, and palatability of <em>Ulva</em> sp.. When cultivated under the synthetic enriched media (LF) the species exhibits characteristics better suitable for human consumption, although requiring a higher economic investment for production, while biomass derived from wastewater nutrients (LD, LU) confirms potential applications of the seaweed as valuable feed and for bioremediation services.</div></div>","PeriodicalId":7855,"journal":{"name":"Algal Research-Biomass Biofuels and Bioproducts","volume":"84 ","pages":"Article 103749"},"PeriodicalIF":4.6,"publicationDate":"2024-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142532513","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Effects of salinity and temperature on growth performance, biochemical composition, and biosilification process of Cyclotella cryptica 盐度和温度对隐杆线虫生长性能、生化成分和生物硅化过程的影响
IF 4.6 2区 生物学
Algal Research-Biomass Biofuels and Bioproducts Pub Date : 2024-10-15 DOI: 10.1016/j.algal.2024.103751
Yicun Zhao , Yan Sun , Zhengfeng Zhu , Yuhang Li , Lin Zhang , Jian Li , Spiros N. Agathos , Chengxu Zhou , Jichang Han
{"title":"Effects of salinity and temperature on growth performance, biochemical composition, and biosilification process of Cyclotella cryptica","authors":"Yicun Zhao ,&nbsp;Yan Sun ,&nbsp;Zhengfeng Zhu ,&nbsp;Yuhang Li ,&nbsp;Lin Zhang ,&nbsp;Jian Li ,&nbsp;Spiros N. Agathos ,&nbsp;Chengxu Zhou ,&nbsp;Jichang Han","doi":"10.1016/j.algal.2024.103751","DOIUrl":"10.1016/j.algal.2024.103751","url":null,"abstract":"<div><div>Microalgae are valuable resources for producing high-value compounds, but large-scale cultivation in open raceway ponds (ORPs) faces challenges due to salinity and temperature fluctuations, which affect biomass yield and quality. Developing strains with high productivity and stable quality across varying salinity and temperature levels offers a promising approach to overcoming these challenges. <em>Cyclotella cryptica</em>, a marine diatom species, is known for its robustness under diverse salinity conditions, but its biochemical composition and frustule morphology in respond to salinity remains largely unknown. Moreover, the responses of <em>C. cryptica</em> to temperature fluctuations are largely unexplored, posing a barrier to its industrial application in ORPs. In this study, <em>C. cryptica</em> was cultivated under six salinity levels (19–34 ‰ at 3 ‰ intervals) and five temperature regimes (17–33 °C at 4 °C intervals) to investigate the effects of these environmental factors on growth performance, macronutrient composition, fatty acid (FA) profile, and carotenoid content. Additionally, we examined the biosilica content, frustule morphology, and the transcriptional levels of five frustule biogenesis related genes (<em>CcSin1</em>, <em>CcSin2</em>, and <em>CcSAP1</em>–<em>3</em>) to assess the impact of salinity and temperature on the biosilification process. Our findings revealed that salinity exerts minimal effects on growth, macronutrient composition, FA profile, and carotenoid content, whereas it induces significant variations in frustule morphology and biosilica deposition. In contrast, temperature markedly influences all evaluated parameters. These insights into the adaptive mechanisms of <em>C. cryptica</em> to salinity and temperature variations are crucial for optimizing the scale-up cultivation strategy of this species in ORPs.</div></div>","PeriodicalId":7855,"journal":{"name":"Algal Research-Biomass Biofuels and Bioproducts","volume":"84 ","pages":"Article 103751"},"PeriodicalIF":4.6,"publicationDate":"2024-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142446074","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
24-Epibrassinolide promoted growth and organic compounds accumulation in Dunaliella parva by enhancing photosynthesis 24-Epibrassinolide 通过增强光合作用促进盾形藻的生长和有机化合物的积累
IF 4.6 2区 生物学
Algal Research-Biomass Biofuels and Bioproducts Pub Date : 2024-10-15 DOI: 10.1016/j.algal.2024.103753
Shiyu Liang, Lihua Li, Mengxiang Ling, Lingru Ruan, Limei Huang, Changhua Shang
{"title":"24-Epibrassinolide promoted growth and organic compounds accumulation in Dunaliella parva by enhancing photosynthesis","authors":"Shiyu Liang,&nbsp;Lihua Li,&nbsp;Mengxiang Ling,&nbsp;Lingru Ruan,&nbsp;Limei Huang,&nbsp;Changhua Shang","doi":"10.1016/j.algal.2024.103753","DOIUrl":"10.1016/j.algal.2024.103753","url":null,"abstract":"<div><div>As a commonly used type of the sixth class of phytohormones brassinosteroids (BRs), 24-epibrassinolide (EBL) plays the important roles in plant growth and development. <em>Dunaliella parva</em> (<em>D. parva</em>) is an important lipid-producing microalga, and its growth and accumulation of organic compounds need to be further improved for higher application value. However, the effects of EBL on <em>D. parva</em> are still unclear now. In this study, <em>D. parva</em> was treated with different concentrations of 24-epibrassinolide (EBL) to evaluate its influence. Cell density of 0.5 mg/L EBL treated group was 1.28-fold of control at 18 d. The contents of chlorophyll, carotenoid, carbohydrate, starch, protein of 0.5 mg/L EBL treated group were 1.31-, 1.18-, 1.49-, 1.35-, and 1.54-fold of control. The highest mRNA levels of <em>rbcS</em>, <em>rbcL</em>, <em>RuPE</em>, <em>PRK</em>, <em>TPI</em>, <em>FBPA</em>, <em>FBPase</em>, <em>SBPase</em>, <em>DpME</em>, <em>CA</em> in EBL treated group were 1.94-, 2.43-, 2.14-, 1.76-, 1.97-, 2.21-, 1.48-, 1.96-, 2.06-, and 1.89-fold of control. The highest enzymatic activities of ME, CA and RuBisCO in EBL-treated group were 1.27-, 1.23-, and 1.37-fold of control. Lipid content of 0.4 mg/L EBL treated group was 1.44-fold of control. This study demonstrated the great potential of EBL to obtain higher biomass and organic compounds accumulation. Our study indicates that EBL treatment is valuable for the subsequent commercial production of biofuel and other high-value metabolites using microalgal biomass as raw material.</div></div>","PeriodicalId":7855,"journal":{"name":"Algal Research-Biomass Biofuels and Bioproducts","volume":"84 ","pages":"Article 103753"},"PeriodicalIF":4.6,"publicationDate":"2024-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142445966","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Beneficial impact of AgNPs on fucoxanthin production and evaluation of phytochemical variations in Isochrysis sp. AgNPs 对等绿藻中狐黄素产量的有益影响及植物化学变异评估
IF 4.6 2区 生物学
Algal Research-Biomass Biofuels and Bioproducts Pub Date : 2024-10-14 DOI: 10.1016/j.algal.2024.103737
Vijayakumar Maduraimuthu , Jayappriyan Kothilmozhian Ranishree , Raja Rathinam
{"title":"Beneficial impact of AgNPs on fucoxanthin production and evaluation of phytochemical variations in Isochrysis sp.","authors":"Vijayakumar Maduraimuthu ,&nbsp;Jayappriyan Kothilmozhian Ranishree ,&nbsp;Raja Rathinam","doi":"10.1016/j.algal.2024.103737","DOIUrl":"10.1016/j.algal.2024.103737","url":null,"abstract":"<div><div>Silver nanoparticles (AgNPs) are commonly transformed into various engineered nanomaterials for various applications, leading to their unavoidable disposal in the environment. Despite their toxicity, knowledge gaps remain regarding the metabolic perturbations induced by AgNPs on phytoplankton, which play a crucial role in global biogeochemical cycles and food-web dynamics. This study aimed to utilize AgNPs to elicit stress response of <em>Isochrysis</em> sp. KRJ-105, for enhancing fucoxanthin production, a valuable pigment with anti-inflammatory and antioxidant properties. The microalgae were treated with different AgNP concentrations (10, 30, 50, 70, and 100 mg/L) for 12 days, and the results showed that the addition of 50 mg/L AgNPs significantly promoted cellular fucoxanthin biosynthesis (34.61 ± 0.50 mg/g), a 5.94 mg/g higher production compared to the control (28.67 ± 1.01 mg/g). This study represents the first-time report of higher fucoxanthin production in <em>Isochrysis</em> sp. compared to previous reports in the last decade. Furthermore, AgNPs induced stress conditions in <em>Isochrysis</em> sp., also reflected in growth rates and alterations in biochemical composition, including total carbohydrate, total protein, lipid, carotenoid, and reactive oxygen species (ROS) content. Scanning electron microscopy (SEM) and Energy-dispersive X-ray (EDAX) analysis revealed the interaction of AgNPs with the cell surface of <em>Isochrysis</em> sp. KRJ-105. These findings provide novel insights into microalgal interactions with nanoparticles, offering fundamental knowledge on physiochemical changes induced in <em>Isochrysis</em> sp., and its future development in cultivation aspects for superior commercial fucoxanthin production.</div></div>","PeriodicalId":7855,"journal":{"name":"Algal Research-Biomass Biofuels and Bioproducts","volume":"84 ","pages":"Article 103737"},"PeriodicalIF":4.6,"publicationDate":"2024-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142532507","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Optimization of iron, phosphate, and salinity in nutrient medium using response surface methodology for enhancing biochemical composition in Chlorella sp. culture 利用响应面方法优化营养培养基中的铁、磷酸盐和盐度,提高小球藻培养的生化成分
IF 4.6 2区 生物学
Algal Research-Biomass Biofuels and Bioproducts Pub Date : 2024-10-14 DOI: 10.1016/j.algal.2024.103747
Jurmin H. Sarri , Mahmut Elp
{"title":"Optimization of iron, phosphate, and salinity in nutrient medium using response surface methodology for enhancing biochemical composition in Chlorella sp. culture","authors":"Jurmin H. Sarri ,&nbsp;Mahmut Elp","doi":"10.1016/j.algal.2024.103747","DOIUrl":"10.1016/j.algal.2024.103747","url":null,"abstract":"<div><div>Microalga <em>Chlorella</em> sp. is a highly scientifically and commercially attractive unicellular microorganism and has developed a stable industry as a nutritional supplement for people and animals. Various nutrient media have been used to grow <em>Chlorella</em> sp. cultures to enhance their growth, pigmentation, and lipid content. However, the optimal biochemical composition and density of <em>Chlorella</em> sp. cultures require an understanding of optimizing the nutrient medium to study their production. The present study aims to investigate the effects of iron, phosphate, and salinity concentrations by working synergically in a nutrient medium on the growth responses, pigments, and lipid accumulation of <em>Chlorella</em> sp. culture using a response surface methodology (RSM) approach. Using the result from the RSM software, a total of 18 experimental groups (E1 – E18) were evaluated, and one confirmation (C) study was conducted. The results revealed that the E7 experiment in <em>Chlorella</em> sp. culture provided the highest cell density and specific growth rate (SGR) with 176.00 × 10<sup>6</sup> cells mL<sup>−1</sup> and 0.35 day<sup>−1</sup>, respectively. Similarly, the E5 and E1 experiments produced the highest cell density of 166.10 × 10<sup>6</sup> cells. mL<sup>−1</sup> and 152.13 × 10<sup>6</sup> cells mL<sup>−1</sup>, respectively. The SGR was also increased at 0.33 day<sup>−1</sup> in the E5 experiment and 0.33 day<sup>−1</sup> in the E1 experiment. Consequently, the culture of <em>Chlorella</em> sp. containing high iron and phosphate concentrations and lower salinity in a nutrient medium had the highest number of cells, SGR, and pigment accumulation (chlorophyll <em>a</em> and total carotenoid). In addition, the presence of high salinity concentrations reduces <em>Chlorella</em> sp. growth. However, the increase in the growth of <em>Chlorella</em> sp. culture did not indicate an increase in other biochemical compositions. In some cases, biochemical compositions are high due to nutritional limitations or stress factors. For example, in pigment accumulation, chlorophyll <em>a</em> pigment accumulation was increased in experiment E7 (51.57 μg mL<sup>−1</sup>), while total carotenoid accumulation was increased in experiment E8 (20.68 μg mL<sup>−1</sup>). In addition, increasing salinity concentration increased chlorophyll <em>a</em> and total carotenoid contents per cell, but decreased <em>Chlorella</em> sp. growth as shown in the E4 experiment, which achieved chlorophyll <em>a</em> levels of 1.38 pg cell<sup>−1</sup> and total carotenoid levels of 0.52 pg cell<sup>−1</sup>. Furthermore, <em>Chlorella</em> sp. culture produces a higher lipid accumulation of 37.38 % in the E3 experiment. Hence, the results of this study contribute to understanding the optimal biochemical composition and cell growth of <em>Chlorella</em> sp. cultures.</div></div>","PeriodicalId":7855,"journal":{"name":"Algal Research-Biomass Biofuels and Bioproducts","volume":"84 ","pages":"Article 103747"},"PeriodicalIF":4.6,"publicationDate":"2024-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142445969","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Magnetite Fe3O4 nanoparticles impregnated on Chlorella vulgaris microalgae: Its role in obtaining hydrogen from the sodium borohydride-hydrolysis 浸渍在小球藻上的磁铁矿 Fe3O4 纳米颗粒:在从硼氢化钠水解中获取氢气方面的作用
IF 4.6 2区 生物学
Algal Research-Biomass Biofuels and Bioproducts Pub Date : 2024-10-12 DOI: 10.1016/j.algal.2024.103745
Sibel DUMAN , Bulent KAYA , Fatma CAF , Osman KOK , Ilhami TUZUN
{"title":"Magnetite Fe3O4 nanoparticles impregnated on Chlorella vulgaris microalgae: Its role in obtaining hydrogen from the sodium borohydride-hydrolysis","authors":"Sibel DUMAN ,&nbsp;Bulent KAYA ,&nbsp;Fatma CAF ,&nbsp;Osman KOK ,&nbsp;Ilhami TUZUN","doi":"10.1016/j.algal.2024.103745","DOIUrl":"10.1016/j.algal.2024.103745","url":null,"abstract":"<div><div>Recently, the single-celled green freshwater microalgae species “<em>Chlorella vulgaris</em>” has attracted the attention of researchers due to its different usage areas. In particular, research focuses on the technology of obtaining bio‑hydrogen with various techniques. This research involves, for the first time, the use of the microalga <em>Chlorella vulgaris</em> as a bio-supporting material for magnetite Fe<sub>3</sub>O<sub>4</sub> nanoparticles (Fe<sub>3</sub>O<sub>4</sub>NPs@<em>Chlorella vulgaris</em>) and the production of hydrogen through catalytic hydrolysis of NaBH<sub>4</sub> (sodium borohydride, SB) in the presence of the resulting magnetite nanoparticles. Here, detailed kinetic studies were carried out during the SB-hydrolysis by taking magnetite Fe<sub>3</sub>O<sub>4</sub>NPs@<em>Chlorella vulgaris</em> and SB in varying amounts and at varying temperatures, and the activation energy and lifetime of magnetite Fe<sub>3</sub>O<sub>4</sub>NPs@<em>Chlorella vulgaris</em> was found to be 23.49 kJ mol<sup>−1</sup> and 93,280 mol H<sub>2</sub> (mol Fe<sub>3</sub>O<sub>4</sub>)<sup>−1</sup>, respectively. No change in the chemical and physical structure of the biocatalyst was observed during the hydrolysis of SB, so only detailed characterization of microalgae and magnetite Fe<sub>3</sub>O<sub>4</sub>NPs@<em>Chlorella vulgaris</em> was performed, and the particle size of the catalyst was calculated as 10.19 ± 2.17 nm. The results showed that these Fe<sub>3</sub>O<sub>4</sub>NPs@<em>Chlorella vulgaris</em>, which can be easily separated magnetically and have high catalytic activity, are a “clean” and quite surprising catalyst in terms of hydrogen production.</div></div>","PeriodicalId":7855,"journal":{"name":"Algal Research-Biomass Biofuels and Bioproducts","volume":"84 ","pages":"Article 103745"},"PeriodicalIF":4.6,"publicationDate":"2024-10-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142441161","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信