Algal Research-Biomass Biofuels and Bioproducts最新文献

筛选
英文 中文
The dietary supplementation of Sargassum fusiforme can effectively alleviate high-fat diet induced metabolic abnormalities 膳食补充马尾藻能有效缓解高脂饮食引起的代谢异常
IF 4.6 2区 生物学
Algal Research-Biomass Biofuels and Bioproducts Pub Date : 2024-09-22 DOI: 10.1016/j.algal.2024.103722
Yu Bai , Yuanyuan Fu , Kang Chen , Yan Sun , Chengxu Zhou , Jichang Han , Xiaojun Yan
{"title":"The dietary supplementation of Sargassum fusiforme can effectively alleviate high-fat diet induced metabolic abnormalities","authors":"Yu Bai ,&nbsp;Yuanyuan Fu ,&nbsp;Kang Chen ,&nbsp;Yan Sun ,&nbsp;Chengxu Zhou ,&nbsp;Jichang Han ,&nbsp;Xiaojun Yan","doi":"10.1016/j.algal.2024.103722","DOIUrl":"10.1016/j.algal.2024.103722","url":null,"abstract":"<div><div><em>Sargassum fusiforme</em>, a brown seaweed widely consumed as a culinary delicacy and medicinal herb in East Asian countries, contains multiple bioactive compounds with anti-inflammatory, antioxidant, and anti-obesity properties. This suggests that its dietary consumption could help mitigate metabolic diseases induced by high-fat diet (HFD). To test this hypothesis, we initially analyzed the nutritional components of the macroalga, and evaluated its acute oral toxicity and long-term safety. Subsequently, we explored the impacts of its dietary intake on HFD-fed mice. Additionally, 16S rRNA sequencing was employed to further elucidate the mechanism underlying the protective effects of this macroalga against HFD-induced metabolic abnormalities. Our results revealled that <em>S. fusiforme</em> has a desirable nutrient profile, characterized by rich carbohydrates, polyunsaturated fatty acids, and carotenoids, and is also highly safe for consumption. Its dietary intake remarkably alleviated HFD-induced metabolic disorders. Analysis of gut microbiota showed that HFD consumption increased the relative abundance of Firmicutes and decreased Bacteroidetes. This trend was further exacerbated by <em>S. fusiforme</em> supplementation, resulting in a higher Firmicutes/Bacteroidetes ratio compared to both the control and HFD groups. At the genus level, <em>Muribaculum</em>, <em>Lactobacillus</em>, <em>Clostridia_UCG_014</em>, <em>Clostridium</em>_sp, <em>Acetatifactor</em>, <em>Eubacterium_coprostanoligenes</em>, and <em>IS_44</em> (from family Nitrosomonadaceae) were significantly enriched in the mice supplemented with <em>S. fusiforme</em>. These findings support the potential use of <em>S. fusiforme</em> as a functional food to counteract HFD-induced metabolic dysbiosis.</div></div>","PeriodicalId":7855,"journal":{"name":"Algal Research-Biomass Biofuels and Bioproducts","volume":"83 ","pages":"Article 103722"},"PeriodicalIF":4.6,"publicationDate":"2024-09-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142320147","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Topical formulations contained an extract from marine alga Cladophora glomerata 外用制剂含有海洋藻类 Cladophora glomerata 的提取物
IF 4.6 2区 生物学
Algal Research-Biomass Biofuels and Bioproducts Pub Date : 2024-09-21 DOI: 10.1016/j.algal.2024.103717
Arpa Petchsomrit , Kunlathida Luangpraditkun , Naphatson Chanthathamrongsiri , Nadechanok Jiangseubchatveera , Nattawut Leelakanok , Thanchanok Sirirak
{"title":"Topical formulations contained an extract from marine alga Cladophora glomerata","authors":"Arpa Petchsomrit ,&nbsp;Kunlathida Luangpraditkun ,&nbsp;Naphatson Chanthathamrongsiri ,&nbsp;Nadechanok Jiangseubchatveera ,&nbsp;Nattawut Leelakanok ,&nbsp;Thanchanok Sirirak","doi":"10.1016/j.algal.2024.103717","DOIUrl":"10.1016/j.algal.2024.103717","url":null,"abstract":"<div><div>The <em>Cladophora glomerata</em> is a green alga abundant in fresh and seawater. The extraction of <em>C. glomerata</em> using glycol-based solvents, including butylene glycol (BG), polyethylene glycol 400 (PEG 400), and propylene glycol (PG), as the green solvents to obtain antioxidants and nutrients that can be further used in health care and pharmaceutical applications. The extraction of <em>C. glomerata</em> with glycol-base solvents using the microwave-assisted extraction (MAE) method was optimized. The liquid extraction using 60 % volume by volume of polyethylene glycol yielded the highest total phenolic content (4.00 ± 0.08 mg gallic acid equivalence per g dry weight) and antioxidant activity (IC<sub>50</sub> 0.14 ± 0.02 mg/mL). The algal extract was stable at pH 6 to 8 and a temperature lower than 25 °C. After incorporating the algal extract in topical formulations including serum and emulgel, we found that the preparations were stable and retained the extract's antioxidant activity. In addition, all algal extracts, extract-loaded serum, and emulgel did not show cytotoxicity effects in normal adult human dermal fibroblasts.</div></div>","PeriodicalId":7855,"journal":{"name":"Algal Research-Biomass Biofuels and Bioproducts","volume":"83 ","pages":"Article 103717"},"PeriodicalIF":4.6,"publicationDate":"2024-09-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142320146","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Use of plant growth regulators and their combined application to enhance lipid productivity in the filamentous microalga Tribonema sp. 使用植物生长调节剂及其联合应用提高丝状微藻 Tribonema sp.
IF 4.6 2区 生物学
Algal Research-Biomass Biofuels and Bioproducts Pub Date : 2024-09-20 DOI: 10.1016/j.algal.2024.103721
Feifei Wang, Siyan Liu, Yuanhong Li, Na Zhang, Shuyi Li, Zhenzhou Zhu
{"title":"Use of plant growth regulators and their combined application to enhance lipid productivity in the filamentous microalga Tribonema sp.","authors":"Feifei Wang,&nbsp;Siyan Liu,&nbsp;Yuanhong Li,&nbsp;Na Zhang,&nbsp;Shuyi Li,&nbsp;Zhenzhou Zhu","doi":"10.1016/j.algal.2024.103721","DOIUrl":"10.1016/j.algal.2024.103721","url":null,"abstract":"<div><p>Oleaginous <em>Tribonema</em> sp. has shown great potential in biodiesel production. However, effective strategies are still needed to increase overall lipid productivity for cost-effectiveness. Although the effects of plant growth regulators (PGRs) on enhancing microalgal growth and lipid content have been widely demonstrated, the synergistic effects of their combinations on improving lipid productivity in <em>Tribonema</em> sp. remain unclear. In this study, we investigated the comparative effects of five PGRs (e.g., fulvic acid, melatonin, gibberellin, γ-aminobutyric acid [GABA], and indoleacetic-3-acid [IAA]) at different concentrations (0.1–10 mg/L) on the growth, nitrogen uptake, and lipid content of <em>Tribonema</em> sp. The results showed that 10 mg/L GABA and 0.1 mg/L IAA were optimal conditions, contributing to an approximately 33.00 % increase in lipid productivity compared with the control (without PGRs). Based on these findings, the combination of optimized concentrations of GABA and IAA, especially in equal proportions, resulted in a more desirable fatty acid profile and produced the highest biomass, lipid content, and lipid productivity, with increases of 23.55 %, 25.62 %, and 54.95 %, respectively, over the control. This combination also significantly increased nitrogen removal efficiency in the medium, which was 46.24 % higher that of the control. These results were attributed to the significant upregulation of genes associated with nitrogen metabolism mediated by the synergy of IAA and GABA, promoting nitrate uptake by algal cells in the medium. Genes involved in photosynthesis and lipid synthesis were also upregulated, facilitating simultaneous biomass and lipid accumulation to maximize lipid productivity. Overall, this study is the first to report the combined application of GABA and IAA as an effective strategy to enhance lipid productivity in <em>Tribonema</em> sp., providing insights into the underlying mechanisms. These findings offer a promising solution for economically improving microalgal lipid production.</p></div>","PeriodicalId":7855,"journal":{"name":"Algal Research-Biomass Biofuels and Bioproducts","volume":"83 ","pages":"Article 103721"},"PeriodicalIF":4.6,"publicationDate":"2024-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142271718","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Exploring quorum sensing for inducing bioactives overproduction in the dinoflagellate microalga Amphidinium carterae 探索通过定量感应诱导甲藻中生物活性物质的过量生产
IF 4.6 2区 生物学
Algal Research-Biomass Biofuels and Bioproducts Pub Date : 2024-09-19 DOI: 10.1016/j.algal.2024.103719
S. Kichouh-Aiadi, J.J. Gallardo-Rodríguez, L. López-Rosales, M.C. Cerón-García, F. García-Camacho, A. Sánchez-Mirón
{"title":"Exploring quorum sensing for inducing bioactives overproduction in the dinoflagellate microalga Amphidinium carterae","authors":"S. Kichouh-Aiadi,&nbsp;J.J. Gallardo-Rodríguez,&nbsp;L. López-Rosales,&nbsp;M.C. Cerón-García,&nbsp;F. García-Camacho,&nbsp;A. Sánchez-Mirón","doi":"10.1016/j.algal.2024.103719","DOIUrl":"10.1016/j.algal.2024.103719","url":null,"abstract":"<div><div>The dinoflagellate <em>Amphidinium carterae</em> is a promising source of unique bioactive compounds with potential applications in diverse industries. Abiotic strategies for increasing bioactive cell quota have been preferred for cost-effectiveness, controllability, and existing knowledge. The supernatants of <em>Heterosigma akashiwo</em> and <em>Pavlova</em> sp. enhanced haemolytic activity of <em>A. carterae</em> by 2.3 times and improved its final biomass by 10 % when added to the growth medium. <em>Prymnesium parvum</em> supernatant increased the total lipid content of <em>A. carterae</em> by 50 %, while <em>Pleurochrysis roscoffensis</em> supernatant boosted its total carotenoid content by 40 %. This study demonstrated a rapid screening strategy for evaluating growth responses and highlights the potential of using allelopathic strategies to enhance bioactive metabolite production. Utilizing supernatants for the formulation of growth media fosters a circular economy by repurposing resources, minimizing waste, and promoting sustainability in the microalgal biotechnological industry.</div></div>","PeriodicalId":7855,"journal":{"name":"Algal Research-Biomass Biofuels and Bioproducts","volume":"83 ","pages":"Article 103719"},"PeriodicalIF":4.6,"publicationDate":"2024-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142314959","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Application of computational fluid dynamics in optimizing microalgal photobioreactors 应用计算流体动力学优化微藻光生物反应器
IF 4.6 2区 生物学
Algal Research-Biomass Biofuels and Bioproducts Pub Date : 2024-09-18 DOI: 10.1016/j.algal.2024.103718
Behnam Amanna , Parisa A. Bahri , Navid R. Moheimani
{"title":"Application of computational fluid dynamics in optimizing microalgal photobioreactors","authors":"Behnam Amanna ,&nbsp;Parisa A. Bahri ,&nbsp;Navid R. Moheimani","doi":"10.1016/j.algal.2024.103718","DOIUrl":"10.1016/j.algal.2024.103718","url":null,"abstract":"<div><div>Developing more efficient microalgal photobioreactors (closed cultivation systems) is impelled by increasing interest in microalgal cultivation to produce high-value products. Compared to open cultivation systems closed photobioreactors (PBRs) offer several advantages, including the potential for high productivity in a small footprint, ability to maintain a controlled environment, and their scalability for commercial production. Computational Fluid Dynamics (CFD) provides a powerful tool to simulate flow conditions of microalgal cultivation systems and analyze operational parameters which may affect cultivation key factors such as light (wavelength, intensity, and period of exposure), accessibility to nutrients, and mixing. Besides, geometric modifications employing CFD can accelerate the design process and considerably reduce the need for a thorough, empirical exploration of reactor configurations and the associated costs. This paper provides a comprehensive review of recent updates on the application of CFD in various microalgal cultivation systems with special focus on different geometry optimization of flat plate photobioreactors.</div><div>This review examines recent studies that have employed various multiphase and turbulence methods within the CFD framework to simulate fluid flow and turbulence within reactors, aiming to improve flow characteristics and enhance microalgal productivity. Specifically, the application of CFD in optimizing flat plate photobioreactors is explored, with researchers investigating a range of baffles and sparger configurations to enhance microalgal productivity. Additionally, the advantages of adopting CFD are discussed, and the potential future applications of CFD in microalgal cultivation are outlined.</div></div>","PeriodicalId":7855,"journal":{"name":"Algal Research-Biomass Biofuels and Bioproducts","volume":"83 ","pages":"Article 103718"},"PeriodicalIF":4.6,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2211926424003308/pdfft?md5=236ce503d7f777dd84f752d0a46c056d&pid=1-s2.0-S2211926424003308-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142314957","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Optimization of strontium removal by Tetraselmis chui grown in bubble column photobioreactors 优化在气泡柱光生物反应器中生长的 Tetraselmis chui 对锶的去除效果
IF 4.6 2区 生物学
Algal Research-Biomass Biofuels and Bioproducts Pub Date : 2024-09-16 DOI: 10.1016/j.algal.2024.103716
Inés Segovia-Campos , Montserrat Filella , Muhammad Saad Bin Zahid , Luísa Barreira , Karl Perron , Daniel Ariztegui
{"title":"Optimization of strontium removal by Tetraselmis chui grown in bubble column photobioreactors","authors":"Inés Segovia-Campos ,&nbsp;Montserrat Filella ,&nbsp;Muhammad Saad Bin Zahid ,&nbsp;Luísa Barreira ,&nbsp;Karl Perron ,&nbsp;Daniel Ariztegui","doi":"10.1016/j.algal.2024.103716","DOIUrl":"10.1016/j.algal.2024.103716","url":null,"abstract":"<div><p>Green microalgae of the class Chlorodendrophyceae have recently attracted the interest of researchers due to their ability to form micropearls (intracellular inclusions of amorphous calcium carbonate) highly enriched in Sr. The marine species <em>Tetraselmis chui</em> (included in the class Chlorodendrophyceae) shows high uptake of both stable and radioactive Sr isotopes and has been suggested as a potential candidate for the development of new bioremediation tools regarding radioactive <sup>90</sup>Sr pollution. In this study, we optimized Sr removal from seawater by growing <em>T. chui</em> in 1-L bubble column photobioreactors (PBRs) with and without CO<sub>2</sub> supply. Culturing <em>T. chui</em> in bubble column PBRs greatly improves cell production and Sr removal compared to previous studies. Furthermore, the addition of 10 mL L<sup>−1</sup> h<sup>−1</sup> CO<sub>2</sub> further accelerates <em>T. chui</em> growth and results in better Sr removal rates. This study presents promising results for the development of new bioremediation methods to treat <sup>90</sup>Sr pollution.</p></div>","PeriodicalId":7855,"journal":{"name":"Algal Research-Biomass Biofuels and Bioproducts","volume":"83 ","pages":"Article 103716"},"PeriodicalIF":4.6,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S221192642400328X/pdfft?md5=51779faf2cebca0192acc793ff55cd99&pid=1-s2.0-S221192642400328X-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142271720","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Biochar-alginate jointly immobilized Chlorella vulgaris in cathode enhanced power generation in photo microbial fuel cells 生物炭-海藻酸盐联合固定化小球藻在光微生物燃料电池阴极增强发电中的应用
IF 4.6 2区 生物学
Algal Research-Biomass Biofuels and Bioproducts Pub Date : 2024-09-16 DOI: 10.1016/j.algal.2024.103714
Yicheng Wu , Yeling Zhou , Fuda Chen , Haiyan Fu , Yong Xiao , Zejie Wang
{"title":"Biochar-alginate jointly immobilized Chlorella vulgaris in cathode enhanced power generation in photo microbial fuel cells","authors":"Yicheng Wu ,&nbsp;Yeling Zhou ,&nbsp;Fuda Chen ,&nbsp;Haiyan Fu ,&nbsp;Yong Xiao ,&nbsp;Zejie Wang","doi":"10.1016/j.algal.2024.103714","DOIUrl":"10.1016/j.algal.2024.103714","url":null,"abstract":"<div><p>The present research investigated for the first time the performance of photo microbial fuel cells (photo-MFCs) with biochar-alginate joint immobilized <em>Chlorella vulgaris</em> (BAJIC) as a cathodic microorganism. The results showed the stabilized voltage output reach 0.182 V in photo-MFCs with BAJIC, which is 61.1 % higher than that of the alginate immobilized <em>C. vulgaris</em> and 2.43 times that of suspended <em>C. vulgaris</em>. Light intensity affected both the cathodic potential and internal resistance of the photo-MFCs with BAJIC. The cathodic potential increased from −0.258 to −0.173 V (vs. Ag/AgCl) when the light intensity was increased from 1500 to 2500 lx. Meanwhile, the internal resistance decreased from 583.88 to 392.51 Ω. The results also showed that BAJIC with the smaller bead diameter generated larger voltage. BAJIC dosage affected the voltage of the increasing stage, while did not influence the stable voltage. This work demonstrated that biochar, as an efficient additive to the alginate immobilized microalgae beads, can boost the performance of microalgae matrix, and thus provide an economical and effective approach to enhance the efficiency of photo-MFCs.</p></div>","PeriodicalId":7855,"journal":{"name":"Algal Research-Biomass Biofuels and Bioproducts","volume":"83 ","pages":"Article 103714"},"PeriodicalIF":4.6,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142271719","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Enhancement of intracellular extraction from Oscillatoria okine and the potential use of the extract as a supplement to fetal bovine serum in animal cell culture 提高鹅膏蕈细胞内提取物的提取率以及将其用作动物细胞培养中胎牛血清补充剂的可能性
IF 4.6 2区 生物学
Algal Research-Biomass Biofuels and Bioproducts Pub Date : 2024-09-15 DOI: 10.1016/j.algal.2024.103713
Nuchanan Kankaew , Worawat Surarit , Veasarach Jonjaroen , Katsaya Khumrangsee , Arachaporn Thong-olran , Ketnarin Panpeang , Chatchol Kongsinkaew , Theppanya Charoenrat , Supenya Chittapun
{"title":"Enhancement of intracellular extraction from Oscillatoria okine and the potential use of the extract as a supplement to fetal bovine serum in animal cell culture","authors":"Nuchanan Kankaew ,&nbsp;Worawat Surarit ,&nbsp;Veasarach Jonjaroen ,&nbsp;Katsaya Khumrangsee ,&nbsp;Arachaporn Thong-olran ,&nbsp;Ketnarin Panpeang ,&nbsp;Chatchol Kongsinkaew ,&nbsp;Theppanya Charoenrat ,&nbsp;Supenya Chittapun","doi":"10.1016/j.algal.2024.103713","DOIUrl":"10.1016/j.algal.2024.103713","url":null,"abstract":"<div><p>A robust cell wall and well-organized thylakoid cyanobacteria can be candidates as a promising resource for C-phycocyanin (C-PC) and intracellular applications in various biotechnological areas. However, the development of extraction techniques with minimal chemical contamination to obtain the components remains an ongoing challenge. This study aimed to assess the efficacy of C-PC and intracellular extraction from <em>Ocillatoria okeni</em> TISTR8549 utilizing freezing-thaw (FT), pulsed electric field (PEF), and high-pressure homogenization (HPH) techniques. Additionally, the potential of <em>O. okeni</em> extract as a supplement and substitute for fetal bovine serum (FBS) in HaCaT cell culture was investigated. FT appeared to be the most proper method for C-PC extraction, yielding the highest purity and yield, although requiring 18 cycles for product accomplishment. PEF seemed unsuitable for intracellular component extraction from cyanobacteria with thick cell walls. The need for increased pulses resulted in thermal elevation and prolonged incubation times led to protein degradation. HPH proves to be an effective method for intracellular extraction, yielding high protein content suitable for the potential substitution of FBS in mammalian cell culture. Particularly, increasing pressure during HPH extraction leads to a decrease in protein yield. Resazurin and SRB assays revealed that adding algal extract in culture medium at concentrations of 1 % (<em>w</em>/<em>v</em>) improved HaCaT cell viability without disrupting cell morphology and metabolic processes. However, substituting algal extract in FBS resulted in cell proliferation decrease. Therefore, supplementing <em>O. okeni</em> extract during cell culture improved HaCaT cell proliferation, but it was unsuitable substitute for FBS in the culture medium. However, the feasibility of employing algal extracts as FBS replacements in cell culture is interesting and warrants further detailed investigation into the specific intracellular components that could serve as substitutes for FBS. Such an approach could offer an alternative source, mitigating ethical concerns and reducing costs associated with FBS usage.</p></div>","PeriodicalId":7855,"journal":{"name":"Algal Research-Biomass Biofuels and Bioproducts","volume":"83 ","pages":"Article 103713"},"PeriodicalIF":4.6,"publicationDate":"2024-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142238525","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Characterization of natural compounds derived from diatom C. gracilis as potential therapeutic agents: An in-silico networking and docking study 作为潜在治疗药物的硅藻 C. gracilis 天然化合物的特征:硅网络和对接研究
IF 4.6 2区 生物学
Algal Research-Biomass Biofuels and Bioproducts Pub Date : 2024-09-14 DOI: 10.1016/j.algal.2024.103712
Raya Bhattacharjya , Hina Bansal , Seneha Santoshi , Subha Rastogi , Archana Tiwari
{"title":"Characterization of natural compounds derived from diatom C. gracilis as potential therapeutic agents: An in-silico networking and docking study","authors":"Raya Bhattacharjya ,&nbsp;Hina Bansal ,&nbsp;Seneha Santoshi ,&nbsp;Subha Rastogi ,&nbsp;Archana Tiwari","doi":"10.1016/j.algal.2024.103712","DOIUrl":"10.1016/j.algal.2024.103712","url":null,"abstract":"<div><p>Marine diatom <em>Chaetoceros gracilis</em> have been known as the key player regulating the nutritional content of aquaculture species. Being able to synthesize an array of high value bioactive compounds like amino acids, lipids, terpenoids and polysaccharides, it also serves as potential therapeutic and nutraceutical agent. This in silico-based study elucidates the interactive association of different compounds, proteins and pathways of the diatom <em>C. gracilis</em> through an integrated network pharmacology and molecular docking approach. According to the Network analysis of the 41 compounds detected, saturated hydrocarbons, diterpenoids and phenolic compounds scored the highest degree (score &gt; 140). These compounds were further coded for approximately 349 protein targets and almost 490 different pathways. HSP90AA1, STAT3, HIF1A, MTOR, ESR1, PIK3CA, MAPK1 and PTGS2 secured highest degree of protein-protein interaction according to STRING database. The gene enrichment analysis further revealed that these proteins were closely associated with metabolic pathways like Pathways in cancer, neuroactive ligand-receptor interaction, calcium and cAMP signaling pathway, PI3K-Akt signaling pathway, Alzheimer's disease and pathways of neurodegeneration which played an instrumental role in the metabolism of diseases and disorders like cancers of breast, prostrate, and liver, schizophrenia and other mental and hypertensive disorders. Furthermore, the molecular docking and toxicity assessment of a few novel compounds was done with mTOR and HSP90AA1 which revealed promising and stable interactions. Thus, this study provides the first in silico insight outlining the anti-cancerous and neuroprotective potential of novel bioactive compounds derived from marine diatom <em>C.gracilis</em>.</p></div>","PeriodicalId":7855,"journal":{"name":"Algal Research-Biomass Biofuels and Bioproducts","volume":"83 ","pages":"Article 103712"},"PeriodicalIF":4.6,"publicationDate":"2024-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142238551","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Screening nitrogen-fixing cyanobacteria that can alleviate cadmium toxicity to rice and reduce cadmium accumulation in brown rice 筛选可减轻水稻镉毒性和减少糙米镉积累的固氮蓝藻
IF 4.6 2区 生物学
Algal Research-Biomass Biofuels and Bioproducts Pub Date : 2024-09-13 DOI: 10.1016/j.algal.2024.103707
Chen Zhuo, Xu Zhang, Xiaotian Liao, Qi Chen, Minhong Zhang, Hongzhi He
{"title":"Screening nitrogen-fixing cyanobacteria that can alleviate cadmium toxicity to rice and reduce cadmium accumulation in brown rice","authors":"Chen Zhuo,&nbsp;Xu Zhang,&nbsp;Xiaotian Liao,&nbsp;Qi Chen,&nbsp;Minhong Zhang,&nbsp;Hongzhi He","doi":"10.1016/j.algal.2024.103707","DOIUrl":"10.1016/j.algal.2024.103707","url":null,"abstract":"<div><p>Among food crops, rice is the most serious food crop contaminated with cadmium (Cd). It is critical to reduce Cd bioavailability in the soil and prevent its accumulation in brown rice. The use of microorganisms to lessen Cd toxicity in rice has been the subject of numerous studies carried out in recent years. The nitrogen-fixing cyanobacterium (NFC) is a potent biofertilizer and heavy metal biosorbent. However, there is a dearth of research on the impact of NFC supplementation on rice's susceptibility to Cd poisoning. This study screened for Cd-tolerant NFCs and assessed how well they might promote growth and lower the amount of Cd in rice. Four NFCs with tolerance to 1 mg L<sup>−1</sup> Cd were selected from ten NFCs. The results of seedling experiment showed that SCAU-10 treatment increased plant height and biomass while reducing Cd levels in seedlings by 62.0 %. The pot experiment also demonstrated that SCAU-10 was effective in lowering Cd content in brown rice by 85.3 %. Reducing the bioavailability of soil Cd, shielding rice roots, preventing Cd transfer from below to above ground, generating phytohormones, and enhancing the photochemical electron quantum yield of rice leaves are a few possible action mechanisms of the NFC. It indicates that <em>Trichormus</em> sp. SCAU-10 has a great deal of promise for use as a biofertilizer in the safe management of Cd-contaminated rice fields. This is the first report on using <em>Trichormus</em> sp. biofertilizer for relieving the toxicity of Cd to rice and reducing Cd accumulation in brown rice.</p></div>","PeriodicalId":7855,"journal":{"name":"Algal Research-Biomass Biofuels and Bioproducts","volume":"83 ","pages":"Article 103707"},"PeriodicalIF":4.6,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142271716","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信