{"title":"On Some Peculiarities of Implementation of Instability of Flat Charged Surface of Electroconductive Liquid","authors":"A. I. Grigor’ev","doi":"10.3103/S1068375523050083","DOIUrl":"10.3103/S1068375523050083","url":null,"abstract":"<p>The characteristic sizes and charges of droplets formed during the realization of the electrostatic instability of a uniformly charged, charge-induced flat surface of an electrically conductive liquid are calculated on the base of the principle of the least energy dissipation in the Onsager nonequilibrium processes. It was found that the droplets of the same size and charges are emitted when the electrostatic instability of a flat liquid surface is realized. The surface should be infinitely extended along both axes of the Cartesian coordinate system of the liquid, and the axes should be perpendicular to the direction of gravity. If to compare the same characteristics of the charged droplet disintegration, unstable to its own charge, then there will be a number of differences, i.e., in the number of emitted progeny droplets, in their sizes and charges, and in the tendency of all parameters to change with an increase in the ordinal number of the progeny droplet. The paper considers the progeny droplets to be initially unstable to the electric charge which is located on them.</p>","PeriodicalId":782,"journal":{"name":"Surface Engineering and Applied Electrochemistry","volume":"59 5","pages":"618 - 627"},"PeriodicalIF":0.9,"publicationDate":"2023-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49671035","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
N. N. Niftiev, A. O. Dashdemirov, F. M. Mamedov, M. B. Muradov
{"title":"Dielectric Properties of Layered MnGaInSe4 Single Crystals in an Alternating Electric Field","authors":"N. N. Niftiev, A. O. Dashdemirov, F. M. Mamedov, M. B. Muradov","doi":"10.3103/S1068375523050137","DOIUrl":"10.3103/S1068375523050137","url":null,"abstract":"<p>In this paper we present the results of studies into the frequency and temperature dependences of the dielectric loss tangent and the real and imaginary parts of the permittivity in MnGaInSe<sub>4</sub> single crystals in an alternating electric field. The main type of dielectric losses in MnGaInSe<sub>4</sub> single crystals in the frequency range of 8 × 10<sup>3</sup>–3 × 10<sup>5</sup> Hz is established to be electrical conductivity losses, while the conductivity is characterized by the zone-hopping mechanism. The activation energies of current carriers of single crystals are determined. The real and imaginary parts of the permittivity are found to undergo significant dispersion, which is of a relaxation nature.</p>","PeriodicalId":782,"journal":{"name":"Surface Engineering and Applied Electrochemistry","volume":"59 5","pages":"644 - 648"},"PeriodicalIF":0.9,"publicationDate":"2023-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49671078","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Voltammetric Determination of Dopamine in the Presence of Caffeine Using a Modified Glassy Carbon Electrode","authors":"Maryam Ebrahimi, Hadi Beitollahi","doi":"10.3103/S1068375523050071","DOIUrl":"10.3103/S1068375523050071","url":null,"abstract":"<div><div><h3>\u0000 <b>Abstract</b>—</h3><p>In this work, an electrochemical sensor based on CuO nanoflowers modified glassy carbon electrode (GCE) was developed for the voltammetric determination of dopamine. The CuO nanoflowers modified GCE showed good catalytic ability for the determination of dopamine. The differential pulse voltammetry investigation showed a linear relation between the dopamine current and its concentration within the range of 0.1–800.0 μM, with a limit of detection of 0.03 ± 0.001 μM. Also, the modified electrode was used for the simultaneous determination of dopamine and caffeine. Both dopamine and caffeine exhibited non-overlapping voltammetric peaks at 235 and 1390 mV, respectively, using CuO nanoflowers/GCE. Finally, the analytical performance of the developed sensor was evaluated for the analysis of dopamine and caffeine in real samples, which showed satisfactory results.</p></div></div>","PeriodicalId":782,"journal":{"name":"Surface Engineering and Applied Electrochemistry","volume":"59 5","pages":"634 - 643"},"PeriodicalIF":0.9,"publicationDate":"2023-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49671006","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
H. T. Doan, D. A. Golosov, J. Zhang, S. N. Melnikov, S. M. Zavadski
{"title":"Application of Optical Emission Spectroscopy for Predicting the Composition of Films in Reactive Magnetron Sputtering of Ti–Al Composite Targets","authors":"H. T. Doan, D. A. Golosov, J. Zhang, S. N. Melnikov, S. M. Zavadski","doi":"10.3103/S106837552305006X","DOIUrl":"10.3103/S106837552305006X","url":null,"abstract":"<div><div><h3>\u0000 <b>Abstract</b>—</h3><p>The processes of reactive magnetron sputtering of Ti–Al composite targets with varying Al/Ti ratios were studied. Dependences of deposition rate, discharge voltage, elemental composition, and intensity of reference plasma emission lines were determined as functions of the oxygen concentration in the Ar–O<sub>2</sub> gas mixture. It was demonstrated that, in reactive sputtering of Ti–Al composite targets, the discharge voltage is determined by the effective ion–electron emission coefficient (IEEC), which depends on the area occupied by the metals on the target, their oxidation states, and the IEEC of the metals and their oxides. The deposition rate of Ti<sub><i>x</i></sub>Al<sub>1 – <i>x</i></sub>O<sub><i>y</i></sub> films both in the metallic and transitional sputtering modes increases proportionally to the fraction of Al in the target, and the relative concentration of the metals in the deposited films depends on the oxygen concentration in the Ar–O<sub>2</sub> gas mixture and is determined by the reactivity of the constituent materials in the target. By optical emission spectroscopy (OES), it was shown that the ratio of the atomic concentrations of Al and Ti in the deposited Ti<sub><i>x</i></sub>Al<sub>1 – <i>x</i></sub>O<sub><i>y</i></sub> films uniquely depends on the ratio of the intensities of the aluminum emission line (AlI) and the titanium emission line (TiI) in the plasma. This allows using OES for predicting the metal contents in the films in reactive magnetron sputtering of Ti–Al targets.</p></div></div>","PeriodicalId":782,"journal":{"name":"Surface Engineering and Applied Electrochemistry","volume":"59 5","pages":"682 - 689"},"PeriodicalIF":0.9,"publicationDate":"2023-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49671010","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Development and Creation of a New Class of Graded-Gap Structures Based on Silicon with the Participation of Zn and Se Atoms","authors":"N. F. Zikrillaev, O. B. Tursunov, G. A. Kushiev","doi":"10.3103/S1068375523050198","DOIUrl":"10.3103/S1068375523050198","url":null,"abstract":"<p>The possibility of the formation of structures such as compounds of elements between chalcogenides and the transition group of metals in the crystal lattice of silicon is studied. This is an urgent problem in electronics. It is shown that, under certain technological conditions, a sufficient concentration of unit cells is formed, which leads to a change in the band structure of silicon itself; i.e., a micro- and nanoscale inclusion in silicon with a direct-gap structure is obtained. The possibilities of creating a fundamentally new class of photocells with an extended spectral sensitivity region, as well as light-emitting devices, light-emitting diodes, and lasers based on them, are shown.</p>","PeriodicalId":782,"journal":{"name":"Surface Engineering and Applied Electrochemistry","volume":"59 5","pages":"670 - 673"},"PeriodicalIF":0.9,"publicationDate":"2023-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49671099","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Heat Transfer during Boiling of a Magnetic Fluid in a Magnetic Field on a Horizontal Surface with Single-Point Heat Supply","authors":"A. A. Yanovskii, A. Ya. Simonovskii","doi":"10.3103/S1068375523040178","DOIUrl":"10.3103/S1068375523040178","url":null,"abstract":"<div><div><h3>\u0000 <b>Abstract</b>—</h3><p>An experimental study was made of the influence of a homogeneous magnetic field on heat transfer during nucleate boiling of a nanodispersed magnetizable fluid (magnetic fluid) on a horizontal surface with single-point heat supply. The boiling curves were obtained for magnetic fluids with volume concentrations of the solid phase of 12, 8, and 5.5% in magnetic fields ranging from 0.7 to 4.2 kA/m. The curves are nonmonotonic, and the value of the magnetic field intensity at which the heat flux is maximum was determined. It was found that, with an increase in the solid-phase concentration, the effect of the magnetic field on the heat flux increases. Based on the theory of approximate heat transfer during boiling of fluids, an expression was derived that satisfactorily describes the influence of the magnetic field on the heat flux in the nucleate boiling regime.</p></div></div>","PeriodicalId":782,"journal":{"name":"Surface Engineering and Applied Electrochemistry","volume":"59 4","pages":"452 - 458"},"PeriodicalIF":0.9,"publicationDate":"2023-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"4190215","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Consideration of the Synergy of Vitamins E and C in the Kinetic Model of Lipid Peroxidation","authors":"E. Yu. Kanarovskii, O. V. Yaltychenko","doi":"10.3103/S1068375523040038","DOIUrl":"10.3103/S1068375523040038","url":null,"abstract":"<div><div><h3>\u0000 <b>Abstract</b>—</h3><p>A theoretical model of the kinetics of lipid peroxidation is considered in which the synergy effect of vitamins E and C is taken into account. Approximations simplifying the model system with consideration of the features of the process of lipid peroxidation are analyzed. The obtained model is minimal and sufficiently adequately describes lipid peroxidation at the stages that are significant for effective control of this process as a whole.</p></div></div>","PeriodicalId":782,"journal":{"name":"Surface Engineering and Applied Electrochemistry","volume":"59 4","pages":"473 - 478"},"PeriodicalIF":0.9,"publicationDate":"2023-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"4191288","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Yu. S. Yapontseva, V. N. Zaichenko, V. S. Kublanovsky, O. Yu. Gorobets, Yu. M. Troshchenkov, O. A. Vyshnevskyi
{"title":"Effect of a Constant Magnetic Field on Electrodeposition of CoMo, CoRe, and CoMoRe Alloys from a Citrate Electrolyte","authors":"Yu. S. Yapontseva, V. N. Zaichenko, V. S. Kublanovsky, O. Yu. Gorobets, Yu. M. Troshchenkov, O. A. Vyshnevskyi","doi":"10.3103/S106837552304018X","DOIUrl":"10.3103/S106837552304018X","url":null,"abstract":"<div><div><h3>\u0000 <b>Abstract</b>—</h3><p>Electrodeposition of CoMo and CoRe binary alloys and CoMoRe ternary alloys from a citrate electrolyte (pH 3.5) was studied depending on the presence of a magnetostatic field and the direction of the magnetic induction vector relative to the surface of the working electrode. It was shown that magnetoelectrolysis significantly increases the current efficiency of all investigated alloys, especially the CoMoRe ternary alloy. The forces acting in the liquid and on bubbles of hydrogen evolved during a reaction in a magnetostatic field were modeled. It was demonstrated that the generation of convective flows by magnetohydrodynamic effect is neither single, nor determining factor. In the case of intense gas evolution, the force balance varies depending on the size of the bubbles: the conduction force and the buoyancy force dominate for large bubbles (about 100 μm), whereas the magnetic gradient force is predominant for small bubbles (less than 1 μm).</p></div></div>","PeriodicalId":782,"journal":{"name":"Surface Engineering and Applied Electrochemistry","volume":"59 4","pages":"412 - 421"},"PeriodicalIF":0.9,"publicationDate":"2023-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"4191293","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"On the Interaction of Azimuthal Modes of Capillary Waves on the Surface of an Elliptic Jet in a Homogeneous Electrostatic Field","authors":"S. O. Shiryaeva, A. I. Grigor’ev","doi":"10.3103/S1068375523040130","DOIUrl":"10.3103/S1068375523040130","url":null,"abstract":"<p>A study was made of the interaction of the first azimuthal modes of capillary waves on the surface of an elliptic jet in a homogeneous electrostatic field that is perpendicular to the axis of the jet. The interaction is nonlinear in the product of two independent small parameters. The interaction arises due to the ellipticity of the perpendicular cross-section of the jet and involves three azimuthal modes: either even or odd. The stability of the jet in the perpendicular homogeneous electrostatic field is lower than that of a jet in a radial electrostatic field. The characteristic destabilization time decreases with increasing initial amplitudes of the interacting modes and intensity of the external electrostatic field, and also depends on the wavenumber.</p>","PeriodicalId":782,"journal":{"name":"Surface Engineering and Applied Electrochemistry","volume":"59 4","pages":"443 - 451"},"PeriodicalIF":0.9,"publicationDate":"2023-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"4194266","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Features of Deformation of Droplets of Magnetic Emulsions in an Alternating Electric Field","authors":"E. S. Beketova, O. A. Nechaeva, Yu. I. Dikanskii","doi":"10.3103/S1068375523040026","DOIUrl":"10.3103/S1068375523040026","url":null,"abstract":"<div><div><h3>\u0000 <b>Abstract</b>—</h3><p>Features of deformation of microdroplets of magnetic emulsions in an alternating electric field were experimentally investigated. It was shown that the deformation behavior can vary depending on the frequency of the electric field: at low frequencies, the droplets flatten along the field direction, and at higher frequencies, they elongate. It was found that the frequency value corresponding to the transition from the flattened to the elongated droplet shape depends on the electrical conductivity of the droplet, the intensity of the electric field, and temperature. It was demonstrated that the droplet deformation caused by the electric field can be compensated for by the additional application of a magnetic field. Analysis of the obtained results took into account the movement of liquid phases due to the accumulation of free charge at the interfaces of the droplets and the electrodes creating the field.</p></div></div>","PeriodicalId":782,"journal":{"name":"Surface Engineering and Applied Electrochemistry","volume":"59 4","pages":"459 - 466"},"PeriodicalIF":0.9,"publicationDate":"2023-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"4194284","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}