N. F. Zikrillaev, M. M. Shoabdurakhimova, U. Kh. Kurbanova, N. Narkulov, F. K. Shakarov
{"title":"磁场、电场和光强对硅中重组波参数的影响","authors":"N. F. Zikrillaev, M. M. Shoabdurakhimova, U. Kh. Kurbanova, N. Narkulov, F. K. Shakarov","doi":"10.3103/S1068375524700248","DOIUrl":null,"url":null,"abstract":"<p>The paper presents experimental study results of self-oscillations of the current of the recombination wave (RW) type in silicon doped with impurity selenium atoms. Doping of silicon with impurity selenium atoms was carried out using a newly developed technology, which allows for the formation of nanoclusters of impurity selenium atoms in the silicon lattice consisting of Se<sub>2</sub> and Se<sub>4</sub> molecules, without erosion of the surface of the samples. Self-oscillations in the <span>\\({\\text{Si}}\\left\\langle {{\\text{Se}}} \\right\\rangle \\)</span> samples were detected at room temperature and at sufficiently low electric fields. The dependences of the RW parameters (amplitude and frequency) in the Si<span>\\(\\left\\langle {{\\text{Se}}} \\right\\rangle \\)</span> samples on the resistivity and concentration of the formed nanoclusters of selenium atoms, as well as on the influence of a magnetic field, which makes it possible to control the amplitude in the range of <i>J</i> = 10<sup>–5</sup>–5 × 10<sup>–3</sup> A and the frequency of self-oscillations of <i>f</i> = 10<sup>4</sup>–(5 × 10<sup>6</sup>) Hz. The mechanism of the observed RWs is explained by the formation of nanoclusters consisting of two (Se<sub>2</sub>) or four (Se<sub>4</sub>) selenium atoms in silicon, which leads to the formation of fluctuations (clusters) of the main charge carriers and their reaching contact when determining the magnitude of the applied constant electric field. A possibility of practical use of self-oscillations of current observed in silicon diffusion doped with selenium impurity atoms to create solid-state generators is shown.</p>","PeriodicalId":782,"journal":{"name":"Surface Engineering and Applied Electrochemistry","volume":"60 5","pages":"691 - 697"},"PeriodicalIF":0.9000,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effect of the Magnetic Field, Electric Field, and Light Intensity on the Parameters of Recombination Waves in Silicon\",\"authors\":\"N. F. Zikrillaev, M. M. Shoabdurakhimova, U. Kh. Kurbanova, N. Narkulov, F. K. Shakarov\",\"doi\":\"10.3103/S1068375524700248\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The paper presents experimental study results of self-oscillations of the current of the recombination wave (RW) type in silicon doped with impurity selenium atoms. Doping of silicon with impurity selenium atoms was carried out using a newly developed technology, which allows for the formation of nanoclusters of impurity selenium atoms in the silicon lattice consisting of Se<sub>2</sub> and Se<sub>4</sub> molecules, without erosion of the surface of the samples. Self-oscillations in the <span>\\\\({\\\\text{Si}}\\\\left\\\\langle {{\\\\text{Se}}} \\\\right\\\\rangle \\\\)</span> samples were detected at room temperature and at sufficiently low electric fields. The dependences of the RW parameters (amplitude and frequency) in the Si<span>\\\\(\\\\left\\\\langle {{\\\\text{Se}}} \\\\right\\\\rangle \\\\)</span> samples on the resistivity and concentration of the formed nanoclusters of selenium atoms, as well as on the influence of a magnetic field, which makes it possible to control the amplitude in the range of <i>J</i> = 10<sup>–5</sup>–5 × 10<sup>–3</sup> A and the frequency of self-oscillations of <i>f</i> = 10<sup>4</sup>–(5 × 10<sup>6</sup>) Hz. The mechanism of the observed RWs is explained by the formation of nanoclusters consisting of two (Se<sub>2</sub>) or four (Se<sub>4</sub>) selenium atoms in silicon, which leads to the formation of fluctuations (clusters) of the main charge carriers and their reaching contact when determining the magnitude of the applied constant electric field. A possibility of practical use of self-oscillations of current observed in silicon diffusion doped with selenium impurity atoms to create solid-state generators is shown.</p>\",\"PeriodicalId\":782,\"journal\":{\"name\":\"Surface Engineering and Applied Electrochemistry\",\"volume\":\"60 5\",\"pages\":\"691 - 697\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2024-10-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Surface Engineering and Applied Electrochemistry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://link.springer.com/article/10.3103/S1068375524700248\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Surface Engineering and Applied Electrochemistry","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.3103/S1068375524700248","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
Effect of the Magnetic Field, Electric Field, and Light Intensity on the Parameters of Recombination Waves in Silicon
The paper presents experimental study results of self-oscillations of the current of the recombination wave (RW) type in silicon doped with impurity selenium atoms. Doping of silicon with impurity selenium atoms was carried out using a newly developed technology, which allows for the formation of nanoclusters of impurity selenium atoms in the silicon lattice consisting of Se2 and Se4 molecules, without erosion of the surface of the samples. Self-oscillations in the \({\text{Si}}\left\langle {{\text{Se}}} \right\rangle \) samples were detected at room temperature and at sufficiently low electric fields. The dependences of the RW parameters (amplitude and frequency) in the Si\(\left\langle {{\text{Se}}} \right\rangle \) samples on the resistivity and concentration of the formed nanoclusters of selenium atoms, as well as on the influence of a magnetic field, which makes it possible to control the amplitude in the range of J = 10–5–5 × 10–3 A and the frequency of self-oscillations of f = 104–(5 × 106) Hz. The mechanism of the observed RWs is explained by the formation of nanoclusters consisting of two (Se2) or four (Se4) selenium atoms in silicon, which leads to the formation of fluctuations (clusters) of the main charge carriers and their reaching contact when determining the magnitude of the applied constant electric field. A possibility of practical use of self-oscillations of current observed in silicon diffusion doped with selenium impurity atoms to create solid-state generators is shown.
期刊介绍:
Surface Engineering and Applied Electrochemistry is a journal that publishes original and review articles on theory and applications of electroerosion and electrochemical methods for the treatment of materials; physical and chemical methods for the preparation of macro-, micro-, and nanomaterials and their properties; electrical processes in engineering, chemistry, and methods for the processing of biological products and food; and application electromagnetic fields in biological systems.