Alvin Lim Teik Zheng, Ellie Yi Lih Teo, Pang Hung Yiu, Supakorn Boonyuen, Yoshito Andou
{"title":"Emerging trends in functional materials for electrochemical sensors in nicotine determination","authors":"Alvin Lim Teik Zheng, Ellie Yi Lih Teo, Pang Hung Yiu, Supakorn Boonyuen, Yoshito Andou","doi":"10.1007/s44211-024-00629-0","DOIUrl":"10.1007/s44211-024-00629-0","url":null,"abstract":"<div><p>In the past year, there has been significant progress in the utilization of electrochemical strategies for the determination of harmful substances. Among those, the electrochemical determination of nicotine (NIC) has continued to be of significant interest ascribed to the global health concern of e-cigarette products, nowadays. Electrochemical sensors have become promising tools for the detection of NIC ascribed to their high sensitivity, selectivity, and ease of use. This review article provides a concise overview of the advanced developments in electrochemical sensors for NIC detection using modified functional materials such as carbon-based materials, metal–organic frameworks (MOF), MXene, polymer, and metallic based modifiers. The sensitivity of electrochemical sensors can be improved by modifying them with these conductive materials ascribed to their physical and chemical properties. The review also addresses the challenges and future perspectives in the field, including sensitivity and selectivity improvements, stability and reproducibility issues, integration with data analysis techniques, and emerging trends. In conclusion, this review article may be of interest to researchers intending to delve into the development of functional electrochemical sensors in future studies.</p><h3>Graphical Abstract</h3><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":7802,"journal":{"name":"Analytical Sciences","volume":"40 11","pages":"1933 - 1946"},"PeriodicalIF":1.8,"publicationDate":"2024-07-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141726800","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Xiaomin Guo, Qian Luo, Miao Zhang, Shi Gang Liu, Xingbo Shi
{"title":"Ratiometric fluorescent determination of sulfadimethoxine in foods based on a dual-emission metal–organic framework","authors":"Xiaomin Guo, Qian Luo, Miao Zhang, Shi Gang Liu, Xingbo Shi","doi":"10.1007/s44211-024-00630-7","DOIUrl":"10.1007/s44211-024-00630-7","url":null,"abstract":"<div><p>Ratiometric fluorescence detection is endowed with higher accuracy than single fluorescence signal assay. In this work, we construct a ratiometric fluorescence probe for the facile quantification of sulfadimethoxine (SDM) in foods. By wrapping N-doped carbon dots (N-CDs) and gold nanoclusters (AuNCs) into zeolitic imidazolate framework-8 (ZIF-8), the nanocomposite of N-CDs/AuNCs@ZIF-8 is facilely prepared and emits two fluorescence including 475 nm from N-CDs and 650 nm from AuNCs. Since bovine serum albumin (BSA) is the stabilizer of AuNCs, SDM can form a complex with BSA, resulting in the fluorescence quenching of AuNCs at 650 nm by a static quenching mechanism. In contrast, SDM has a rare influence on the fluorescence of N-CDs (475 nm). As a result, the use of the probe of N-CDs/AuNCs@ZIF-8 for SDM detection enables simultaneous measurement of response signal and reference signal. Under the optimal condition, the SDM assay based on the probe has a good linear relationship within 10 to 2 × 10<sup>6</sup> ng/mL and the limit of detection (LOD) is low to 1.064 ng/mL. In addition, the fluorescent probe shows good reliability for the detection of SDM in practical food samples.</p><h3>Graphical abstract</h3>\u0000<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":7802,"journal":{"name":"Analytical Sciences","volume":"40 11","pages":"1987 - 1996"},"PeriodicalIF":1.8,"publicationDate":"2024-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141625752","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Fluorescent carbon dots for sensing applications: a review","authors":"Rachna Dhiman, Jagdeep Kumar, Mallika Singh","doi":"10.1007/s44211-024-00609-4","DOIUrl":"10.1007/s44211-024-00609-4","url":null,"abstract":"<div><p>Luminescent carbon dots (CDs) are important class of nanomaterials with fantastic photoluminescence (PL) properties, great biocompatibility, extraordinary solubility in water, minimal expense, and so on. There are many methods for their preparation and they are mainly classed into two groups, top-down and bottom-up approaches. In order to understand the origin of fluorescence in quantum CDs, three mechanisms have been proposed namely molecular state, surface state, and quantum confinement phenomenon. Fluorescent CDs have significant application in the fields of biochemical sensing, photocatalysis, bioimaging, delivery of drugs, and other related fields. In this review article the application of quantum dots as detecting component, for the sensing of different targets, has been summed up. In fact, the detection of several analytes including, anions, cations, small molecules, polymers, cells, and microscopic organisms has been discoursed. Moreover, the future aspects of CDs as detecting resources have been explored.</p><h3>Graphical abstract</h3><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":7802,"journal":{"name":"Analytical Sciences","volume":"40 8","pages":"1387 - 1396"},"PeriodicalIF":1.8,"publicationDate":"2024-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141562504","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Abdulsalam M. Aljumialy, Ahmed S. Al-Rawi, Wahran M. Saod, Emad Abdulrahman Al-Heety
{"title":"Ecological and health risk assessment of heavy metals in interior dust from college campus","authors":"Abdulsalam M. Aljumialy, Ahmed S. Al-Rawi, Wahran M. Saod, Emad Abdulrahman Al-Heety","doi":"10.1007/s44211-024-00627-2","DOIUrl":"10.1007/s44211-024-00627-2","url":null,"abstract":"<div><p>Contamination of college campus dust with heavy metals and the calculation of their ecological and health risks to the students and staff did not receive much attention except in recent years. This study aims to assess the ecological and human health risks of Cd, Cr, Cu, Pb, and Zn in interior dust of College of Science/University campus. An atomic absorption spectrophotometer was utilized to estimate the samples that were collected from 46 locations of the college campus including: classrooms, offices, and laboratories. The Pb, Cu, Cr and Zn metals in the interior dust of the College of Science pose low potential ecological risk, whereas Cd generates medium potential ecological risk. The gained results showed that the student and staff of the College are exposed to low non-cancerous health risks (HI < 1) caused by Cd, Cr, Cu, Pb, and Zn in interior dust. The total lifetime carcinogenic risks (TLCR) of Cd, Cr, and Pb are within the acceptable safe limit (10<sup>–6</sup>–10<sup>–4</sup>). The low non-carcinogenic health risks of Cd, Cr, Cu, Pb, and Zn and that the carcinogenic health risks of Cd, Cr and Pb fall within acceptable safe limits, measured in the interior dust of the campus of the College of Science, does not mean neglecting the continuous assessment of those risks.</p><h3>Graphical abstract</h3><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":7802,"journal":{"name":"Analytical Sciences","volume":"40 10","pages":"1919 - 1926"},"PeriodicalIF":1.8,"publicationDate":"2024-07-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141544435","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Kentaro Saeki, Kazuya Ikari, Shin-Ichi Ohira, Kei Toda
{"title":"Measurement of atmospheric amines and aminoamides by column adsorption/extraction and hydrophilic liquid chromatography-electrospray-tandem mass spectrometry","authors":"Kentaro Saeki, Kazuya Ikari, Shin-Ichi Ohira, Kei Toda","doi":"10.1007/s44211-024-00626-3","DOIUrl":"10.1007/s44211-024-00626-3","url":null,"abstract":"<div><p>Sampling and chromatography-mass spectrometry methods were investigated to measure atmospheric amines and aminoamides. Amines and their amide derivatives play significant roles in new particle formation (NPF) in the atmosphere, especially diamines and aminoamides have higher NPF potentials compared to monoamines. For amine sampling, silica gel tube collection and formic acid extraction gave good overall recoveries (>93 ± 8%) for mono-, di-, tri-, tetramines, and aminoamides. Two chromatography methods were subjected to analyze the extracted amines. One involved direct analysis using hydrophilic interaction liquid chromatography with carboxyl or diol group functioned separation column (carboxyl-HILIC or diol-HILIC), and the other utilized derivatization with 4-(<i>N</i>,<i>N</i>-dimethylaminosulfonyl)-7-fluoro-2,1,3-benzoxadiazole (DBD-F) and subsequent reversed-phase chromatography (HPLC). Separated amines were detected by electrospray ionization and tandem mass spectrometry in both cases. DBD-F-HPLC method provided good sensitivity for mono- and all polyamines (limit of detection (LOD) < 4.6 nM, relative standard deviation (RSD) for 100 nM < 9.2%). However, aminoamides could not be detected by DBD-F-HPLC. Carboxyl-HILIC provided good sensitivities for mono- and diamines and aminoamides (LOD < 1.6 nM, RSD < 4.8%). Forest air measurement was performed and data obtained by carboxyl-HILIC and DBD-F-HPLC showed good agreement for 1,3-diaminopropane, 1,4-diaminobutane (putrescine) and 1,5-diaminopentane (cadaverine) (<i>R</i><sup>2</sup> = 0.9215–0.9739, <i>n</i> = 7–14). Carboxyl-HILIC method was the best for the amine analysis, and combination with silica gel tube sampling provides atmospheric monitoring available. The developed method can be used not only to study atmospheric chemistry of diamines and aminoamides but also to analyze flavor/odor of foods, flowers and wastes.</p><h3>Graphical Abstract</h3>\u0000<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":7802,"journal":{"name":"Analytical Sciences","volume":"40 10","pages":"1907 - 1918"},"PeriodicalIF":1.8,"publicationDate":"2024-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141533414","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Emad Al-Shafei, Ali Aljishi, Mohammed Albahar, Ali Alnasir, Mohammad Aljishi
{"title":"Enhancing refinery heavy oil fractions analytical performance through real-time predicative modeling","authors":"Emad Al-Shafei, Ali Aljishi, Mohammed Albahar, Ali Alnasir, Mohammad Aljishi","doi":"10.1007/s44211-024-00625-4","DOIUrl":"10.1007/s44211-024-00625-4","url":null,"abstract":"<div><p>This study introduces a suite of robust models aimed to advance the determination of physiochemical properties in heavy oil refinery fractions. By integrating real-time analytical technique inside the refinery analysis, we have developed a single analyzer capable of employing six partial least square regression equations. These designed models enable to provide real-time prediction of critical petroleum properties, such as sulfur content, micro carbon residues (MCR), asphaltene content, heating value, and the concentrations of nickel and vanadium metals. Specifically tailored for heavy oil in refinery feeds with an American petroleum institute (API) gravity range of 3° to 32° and sulfur content of 2.8 to 5.5 wt%, the models streamline the analysis process within refinery operations, bridging the gap between catalytic and non-catalytic processes across refinery units. The accuracy of our physiochemical prediction models has been validated against American Society for Testing and Materials (ASTM) standards, demonstrating their capability to deliver precise real-time property values. This approach not only enhances the efficiency of refinery analysis but also sets a new standard for the monitoring and optimization of heavy oil processing in real-time approach.</p><h3>Graphical abstract</h3><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":7802,"journal":{"name":"Analytical Sciences","volume":"40 10","pages":"1899 - 1906"},"PeriodicalIF":1.8,"publicationDate":"2024-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141490615","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Chaogang Xing, Jingqun Yuan, Chenyang Shi, Xuancheng Chen, Shimin Li
{"title":"Utilizing X-ray diffraction in conjunction with competitive adaptive reweighted sampling (CARS) and principal component analysis for the discrimination of medicinal pearl powder and nacre powder","authors":"Chaogang Xing, Jingqun Yuan, Chenyang Shi, Xuancheng Chen, Shimin Li","doi":"10.1007/s44211-024-00624-5","DOIUrl":"10.1007/s44211-024-00624-5","url":null,"abstract":"<div><p>Nacre powder, often utilized to counterfeit medicinal pearl powder due to their similar chemical composition and appearance, poses a challenge in product authentication. This study introduces a rapid and efficient method for distinguishing between medicinal pearl powder and nacre powder using X-ray diffraction in conjunction with principal component analysis (PCA). The X-ray diffraction pattern underwent preprocessing techniques including smoothing denoising (Savitzky-Golay filter, 5-point) and second-order derivative analysis. Subsequently, PCA was employed for dimensionality reduction modeling. The CARS method was applied to select optimal variables for model refinement, determining the data preprocessing approach and key modeling variables. This method demonstrates the capability to accurately differentiate between pearl powder, nacre powder, and even counterfeit samples containing up to 90% pearl powder. With a high accuracy rate, swift operational speed, and potential for automation, this approach shows promise for practical implementation in the realm of pearl powder quality control.</p><h3>Graphical abstract</h3><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":7802,"journal":{"name":"Analytical Sciences","volume":"40 10","pages":"1889 - 1897"},"PeriodicalIF":1.8,"publicationDate":"2024-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141465623","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Development of a simultaneous LC–MS/MS analytical method for plasma: 16 antipsychotics approved in Japan and 4 drug metabolites","authors":"Masamitsu Maekawa, Maki Yokota, Toshihiro Sato, Yu Sato, Masaki Kumondai, Yuji Sato, Masato Suzuka, Daisuke Kobayashi, Kotaro Sakamoto, Masaki Matsuura, Masafumi Kikuchi, Hiroshi Komatsu, Kumiko Fujii, Yuji Ozeki, Hiroaki Tomita, Nariyasu Mano","doi":"10.1007/s44211-024-00619-2","DOIUrl":"10.1007/s44211-024-00619-2","url":null,"abstract":"<div><p>The increased risk of adverse drug reactions due to the concomitant use of antipsychotics is problematic in the treatment of schizophrenia. Therefore, the simultaneous analysis of their plasma concentrations is required. In this study, we developed a simultaneous liquid chromatography/tandem mass spectrometry (LC–MS/MS) method for analyzing plasma antipsychotics approved in Japan for therapeutic drug monitoring (TDM) applications. First, we counted the prescriptions for 16 antipsychotics and concomitant drugs used at the Tohoku University Hospital. LC–MS/MS was used for the simultaneous analysis of 16 antipsychotics and four drug metabolites. This analysis was conducted using a combination of selected reaction monitoring mode and reversed-phase chromatography. Following the examination of the MS/MS and LC conditions, an analytical method validation test was conducted. The developed method was used to analyze plasma antipsychotic levels in patients with schizophrenia. One-third of the patients received treatment with multiple antipsychotics. Under LC–MS/MS conditions, LC separation was performed using a combination of a C18 column and ammonium formate-based mobile phases with a gradient flow. The calibration curves were optimized by adjusting the ion abundance, and 11 compounds met the criteria for intra- and inter-day reproducibility tests. Some stability test results did not meet these criteria; therefore, further investigation is required. The developed method permitted the measurement of all the plasma parameters, including concentrations above the therapeutic range. Therefore, this method may be useful in the daily TDM practice of antipsychotics.</p><h3>Graphical abstract</h3><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":7802,"journal":{"name":"Analytical Sciences","volume":"40 9","pages":"1749 - 1763"},"PeriodicalIF":1.8,"publicationDate":"2024-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11358186/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141449353","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Density and porosity analyses of porous hybrid microparticles containing gas in closed pores using centrifugal liquid sedimentation–dynamic light scattering combined analytical method","authors":"Tetsuji Yamaguchi, Tetsuya Yamamoto","doi":"10.1007/s44211-024-00623-6","DOIUrl":"10.1007/s44211-024-00623-6","url":null,"abstract":"<div><p>Porous hybrid microparticles are characterized by their densities and porosities. Consequently, the evaluation for density and porosity of porous hybrid microparticles in liquids is crucial for predicting the transport of particles in the atmosphere, human body, and industrial processes. However, direct measurement of the density and porosity of porous hybrid microparticles in liquids remains a challenge. In this study, we investigated the centrifugal sedimentation of polystyrene–silica hybrid microparticles with and without gas-containing closed pores. A centrifugal liquid sedimentation–dynamic light scattering combined analytical method was employed to determine the apparent densities of hybrid microparticles with and without gas-containing closed pores. The porosity of the hybrid microparticles with gas-containing closed pores was elucidated based on the inner buoyancy, which is a centrifugal force generated by the presence of low-density gas inside numerous closed pores. Further, the inner gas buoyancy was analyzed to estimate the particle porosity in liquids. The results obtained in this study confirmed the feasibility of utilizing the proposed method to determine the apparent density and porosity of porous hybrid microparticles in liquids.</p><h3>Graphical abstract</h3>\u0000<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":7802,"journal":{"name":"Analytical Sciences","volume":"40 10","pages":"1881 - 1888"},"PeriodicalIF":1.8,"publicationDate":"2024-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141442052","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}