{"title":"Correction: Recent advances in the development of <sup>225</sup>Ac- and <sup>211</sup>At-labeled radioligands for radiotheranostics.","authors":"Masayuki Munekane, Takeshi Fuchigami, Kazuma Ogawa","doi":"10.1007/s44211-025-00763-3","DOIUrl":"https://doi.org/10.1007/s44211-025-00763-3","url":null,"abstract":"","PeriodicalId":7802,"journal":{"name":"Analytical Sciences","volume":" ","pages":""},"PeriodicalIF":1.8,"publicationDate":"2025-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143810319","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Detection of a large antigen through the masking and exposure of a fragment of split luciferase.","authors":"Cheng Qian, Ayumu Ninomiya, Natsuki Shibukawa, Hiroshi Ueda, Takanobu Yasuda, Bo Zhu, Tetsuya Kitaguchi","doi":"10.1007/s44211-025-00754-4","DOIUrl":"https://doi.org/10.1007/s44211-025-00754-4","url":null,"abstract":"<p><p>We developed PMBiT, an antibody-binding Protein M (PM)-based bioluminescent probe that detects large antigens via luciferase reconstitution by exposing a luciferase fragment. Detection is achieved by exploiting the principle that the antibody, large antigen, and PM cannot form a complex simultaneously. PMBiT was prepared by conjugating PM with a HiBiT-based peptide from split NanoLuc luciferase through an Azide-DBCO click reaction. It retained its binding activity to the antibody and showed bioluminescence upon reconstitution of the luciferase with LgBiT, the other fragment of the split NanoLuc. Mixing PMBiT with various IgG antibodies resulted in decreased bioluminescence. In contrast, when PMBiT was mixed with IgG bound to its large antigen, such as human C-reactive protein, a dose-dependent increase in bioluminescence was obtained. Molecular dynamics simulations of PM showed that two regions in the C-terminus contribute to steric clashes with antigens owing to their relatively rigid structures. Furthermore, in silico analysis of the structure suggested that the antigen size was the primary factor blocking the binding of PMBiT to IgG for antigen detection. An immunoassay utilizing PMBiT does not require genetic manipulation of antibodies, allowing for seamless and scalable antibody replacement, and will advance the future of on-site detection and rapid diagnostics.</p>","PeriodicalId":7802,"journal":{"name":"Analytical Sciences","volume":" ","pages":""},"PeriodicalIF":1.8,"publicationDate":"2025-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143810338","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Biosensing approaches in body fluids using extended-gate-type organic field-effect transistor enzymatic sensors.","authors":"Yui Sasaki, Tsuyoshi Minami","doi":"10.1007/s44211-025-00750-8","DOIUrl":"https://doi.org/10.1007/s44211-025-00750-8","url":null,"abstract":"<p><p>Biomarkers in body fluids provide essential chemical information for examining health conditions; however, unlike conventional instrumental approaches, easy-to-use analytical methods have not yet been fully established. This review introduces extended-gate-type organic field-effect transistors (OFETs) as biosensor platforms for real-sample analysis. OFETs are electronic devices that show switching profiles when gate voltages are applied. Therefore, the gate electrode of OFET functions as a sensing unit combined with appropriate molecular recognition materials. Owing to their signal amplification properties, OFETs enable sensitive biosensing. The extended-gate surfaces are easily functionalized with enzymatic layers using chemical modification, and these surfaces provide a high discrimination ability for specific biomarkers from their analogs. This review presents the designs of the extended-gate structures (i.e., integrated and separated styles) and their enzymatic layers and includes their actual sensing performance.</p>","PeriodicalId":7802,"journal":{"name":"Analytical Sciences","volume":" ","pages":""},"PeriodicalIF":1.8,"publicationDate":"2025-04-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143787539","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Recent advances in single-particle analysis with nanopore technology.","authors":"Akihide Arima","doi":"10.1007/s44211-025-00757-1","DOIUrl":"https://doi.org/10.1007/s44211-025-00757-1","url":null,"abstract":"<p><p>Nanopore sensors have been used as ultrasensitive tools for single-particle detection based on ionic current measurement. This simple, yet powerful technique allows researchers to acquire various physical properties of individual particles in a label-free manner. This mini-review describes the recent progress in nanopore technology demonstrated by our group. We first focus on the major advancements in nanopore architecture contributing to high-spatial resolution, followed by the detection strategy designed for long-term analysis. Then, we summarize the application of nanopore technology in infection diagnosis using machine learning. Following that, we discuss its potential for gene therapy, facilitated by high spatial resolution. Furthermore, we also highlighted potential applications of next-generation nanopore technology that contribute to a healthier future.</p>","PeriodicalId":7802,"journal":{"name":"Analytical Sciences","volume":" ","pages":""},"PeriodicalIF":1.8,"publicationDate":"2025-04-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143787541","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Development of a portable battery-powered total reflection X-ray fluorescence spectrometer.","authors":"Hiroshi Yoshii, Tsugufumi Matsuyama, Hiroki Nagai, Yasuhiro Sakai","doi":"10.1007/s44211-025-00751-7","DOIUrl":"https://doi.org/10.1007/s44211-025-00751-7","url":null,"abstract":"<p><p>The detection of nuclear materials is crucial in cases of potential leaks or accidents; however, transporting samples out of such locations may be challenging, necessitating on-site analysis. While total reflection X-ray fluorescence (TXRF) analysis is a highly useful method for determining nuclides with long half-lives, such as uranium isotopes, no commercially available portable TXRF spectrometers can currently operate without an external power source, which may not always be accessible on-site. In this study, we modified the design of a commercially available portable TXRF spectrometer to develop a battery-powered device, enabling TXRF analysis outdoors and in locations without an external power supply. To test the applicability of the device, we analyzed the uranium content in a sample solution, using yttrium as an internal standard. The relative sensitivity coefficient was the same as that of the commercial spectrometer but the limit of detection was deteriorated. Addressing the equipment issues identified in this study is expected to enable efficient and rapid on-site TXRF analysis.</p>","PeriodicalId":7802,"journal":{"name":"Analytical Sciences","volume":" ","pages":""},"PeriodicalIF":1.8,"publicationDate":"2025-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143717921","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"StageTip: a little giant unveiling the potential of mass spectrometry-based proteomics.","authors":"Eisuke Kanao, Yasushi Ishihama","doi":"10.1007/s44211-025-00749-1","DOIUrl":"https://doi.org/10.1007/s44211-025-00749-1","url":null,"abstract":"<p><p>This review highlights the growing impact of StageTips (Stop and Go Extraction Tips), a pipette tip-based LC column in MS-based proteomics. By packing standard pipette tips with reversed-phase, ion-exchange, or metal oxide materials, StageTips enable efficient peptide desalting, fractionation, selective enrichment, and in-tip reactions with minimal sample loss. Recent improvements, including new resin designs and integrated workflows, have further expanded the applications to phosphoproteomics, protein terminomics, and single-cell proteomics. With their simplicity, high reproducibility, and low cost, StageTips offer a versatile platform that can be seamlessly integrated into automated pipelines, increasing the throughput and the depth of proteome analysis. As materials and protocols continue to evolve, StageTips will continue to develop as an essential keystone for robust sample preparation in next-generation proteomics research.</p>","PeriodicalId":7802,"journal":{"name":"Analytical Sciences","volume":" ","pages":""},"PeriodicalIF":1.8,"publicationDate":"2025-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143727566","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Current advances in separation chemistry for antibody purification and analysis.","authors":"Suprit Deol, Yutaka Matsuda, Yuki Hiruta","doi":"10.1007/s44211-025-00748-2","DOIUrl":"https://doi.org/10.1007/s44211-025-00748-2","url":null,"abstract":"<p><p>Monoclonal antibodies (mAbs) have become essential in modern therapeutics, offering high specificity and efficacy in treating diseases such as cancer, autoimmune disorders, and infectious diseases. With the increasing demand for mAbs, robust analytical and purification technologies are critical to ensuring their safety, efficacy, and consistency. This review highlights recent advances in the application of HPLC for both mAb analysis and purification. In the analytical domain, techniques such as size exclusion chromatography (SEC), hydrophobic interaction chromatography (HIC), ion exchange chromatography (IEX), and reversed-phase chromatography (RPLC) are explored for their role in evaluating mAb structural attributes and post-translational modifications (PTMs). These methods are indispensable for ensuring stability and functionality while meeting stringent regulatory requirements. In the context of purification, Protein A affinity chromatography remains the gold standard for initial capture of mAb; however, challenges such as high cost and harsh elution conditions have prompted the development of alternative purification technologies. IEX, HIC, multimodal, and membrane chromatography are also critical in achieving high-purity mAb products through multistep workflows, including intermediate purification and polishing stages. This review emphasizes the central role of HPLC in addressing the complex challenges of mAb manufacturing and characterization. By integrating established and emerging chromatographic techniques, it provides insights into the future directions of therapeutic antibody development.</p>","PeriodicalId":7802,"journal":{"name":"Analytical Sciences","volume":" ","pages":""},"PeriodicalIF":1.8,"publicationDate":"2025-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143699210","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Confirmation of radicals auto-generated in [Bmim][PF<sub>6</sub>]/[C<sub>16</sub>mim][PF<sub>6</sub>]/water reverse micelles and the radical quantification based on the 1,1-diphenyl-2-picrylhydrazine (DPPHH) spectroscopic probe.","authors":"Mengge Wang, Xiaofeng Chen, Zhigang Wang, Ming Li","doi":"10.1007/s44211-025-00744-6","DOIUrl":"https://doi.org/10.1007/s44211-025-00744-6","url":null,"abstract":"<p><p>Ionic liquids (ILs) which belong to the molten salt of a high ionic environment exhibit a number of unique properties, including the formation of various heterogeneities in their microemulsion. We found that auto-generated radicals within a [Bmim][PF<sub>6</sub>]/[C<sub>16</sub>mim][PF<sub>6</sub>]/PBS reverse micelles (IL-RMs) and then the radicals were quantified in this study. For the radical confirmation, EPR spectroscopy with 5,5-dimethyl-1-pyrroline N-oxide (DMPO) free radical scavenger was carried out. A spectroscopic chemical probe of 1,1-diphenyl-2-picrylhydrazine (DPPHH) was employed to quantify the radicals in the IL-RM systems. The mechanism of the radical generation was also proposed. The DPPHH probe method is simple, rapid, and sensitive to quantify free radicals in the IL-RM systems. Finally, IL-RMs were successfully applied to degrade Rhodamine B (Rho-B) dye with low degradation cost, simple operation, short time consumption, and remarkable degradation effect. The results show a near 100% degradation rate for 10 μmol·L<sup>-1</sup> Rho-B in the IL-RMs system with pH 7.4 PBS containing 1 mmol·L<sup>-1</sup> chloroacetic acid as an aqueous phase.</p>","PeriodicalId":7802,"journal":{"name":"Analytical Sciences","volume":" ","pages":""},"PeriodicalIF":1.8,"publicationDate":"2025-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143668653","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Exploring liquid-liquid phase separation in vitro and in vivo using multimodal nonlinear optical imaging.","authors":"Yusuke Murakami, Mia Obuchi, Hiroshi Kamizawa, Shinichi Miyazaki, Akihiro Kishimura, Ryosuke Oketani, Kotaro Hiramatsu, Philippe Leproux, Yu Hayashi, Kentaro Shiraki, Hideaki Kano","doi":"10.1007/s44211-025-00747-3","DOIUrl":"https://doi.org/10.1007/s44211-025-00747-3","url":null,"abstract":"<p><p>Liquid-liquid phase separation leads to the formation of liquid droplets (LqDs) such as P granules in Caenorhabditis elegans (C. elegans). In this study, we demonstrate the label-free visualization of LqDs using multimodal nonlinear optical imaging both in vitro and in vivo. In vitro measurements with polymerized adenine [poly(A)], we found significantly higher poly(A) concentrations in LqDs compared to surrounding solutions, with the limit of detection (LoD) of 32 mg/mL. In vivo measurements, we performed label-free imaging of C. elegans. Despite efforts to detect P granules within P lineage cells in both wild-type C. elegans and green fluorescent protein (GFP)-tagged strains, no clear RNA-specific signals were observed. This indicates that the RNA concentration in P granules is lower than anticipated and falls below our in vitro LoD. These results underscore the challenges of label-free RNA detection in P granules.</p>","PeriodicalId":7802,"journal":{"name":"Analytical Sciences","volume":" ","pages":""},"PeriodicalIF":1.8,"publicationDate":"2025-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143668658","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Electrochemically active DNA ligands for gene detection: present and future.","authors":"Shigeori Takenaka, Shinobu Sato","doi":"10.1007/s44211-025-00745-5","DOIUrl":"https://doi.org/10.1007/s44211-025-00745-5","url":null,"abstract":"<p><p>Electrochemical gene sensing methods are gaining attention as diagnostic chips. Here, we review the electrochemically active DNA ligand-based sensing methods. Various DNA ligands have been reported in these studies, among which metal complexes, methylene blue, and ferrocenyl naphthalene diimide (FND) have been studied in detail. DNA probe immobilized electrodes have been created, hybridization reactions on the electrodes with target DNA fragments have been performed, and electrochemical gene detection has been possible using these DNA ligands. An example of the realization of this system is the successful and accurate cancer diagnosis using FND to examine abnormal methylation of the hTERT gene, providing reassurance about the system's reliability. In addition, electrochemical detection of PCR products has been realized using the current decrease due to the double-stranded DNA binding of methylene blue although it is a signal-off system. A naphthalene diimide derivative with ferrocene and β-CD, FNC, increased the current upon double-stranded DNA binding. Using these FNCs, the detection of PCR products in a homogeneous system was realized. Electrochemical qPCR was realized with these ligands. Since FNDs also bind strongly to tetraplex or G-quadruplex (G4) DNA, we succeeded in electrochemically detecting telomerase activity, which is known as a cancer marker, using FNDs to detect the amount of telomeric DNA elongation, which is its substrate, as the amount of G4 DNA. This technique has realized compassionate cancer diagnosis from oral swab fluid. It is known that G4 is also present in viral genome RNA, and a viral testing method using G4 is expected to be a potential alternative to PCR. The first example was the electrochemical detection of novel coronaviruses using incFND as an RNA G4 ligand.</p>","PeriodicalId":7802,"journal":{"name":"Analytical Sciences","volume":" ","pages":""},"PeriodicalIF":1.8,"publicationDate":"2025-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143662082","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}