Shock WavesPub Date : 2024-08-24DOI: 10.1007/s00193-024-01197-y
A. R. Loflin, C. E. Johnson
{"title":"A review of current safe distance calculations and the risk of mild traumatic brain injury","authors":"A. R. Loflin, C. E. Johnson","doi":"10.1007/s00193-024-01197-y","DOIUrl":"10.1007/s00193-024-01197-y","url":null,"abstract":"<div><p>Explosive breaching is a tactic operational professionals use to gain rapid entry and tactical advantage. This tactic exposes individuals to repeated low-level blasts (LLB), overpressure exposure generally occurring from user-directed munitions. The experimentation described in this paper highlights the need for further research into implementing explosives in tactical situations, specifically in confined areas, and the effects on individuals exposed. While current safety calculations predict peak pressures from an open-air detonation, this study incorporates the impulse of the total explosive event in a confined space. Sixteen explosive events were conducted to measure peak overpressures of the total duration of the event using pencil probes and flush mount-type sensors. These pressure sensors measured detonations at distances greater than or equal to the calculated minimum safe distances (MSD). The study compares these data with the Hopkinson–Cranz scaling law, the Weibull formula, and Kingery–Bulmash (KB) predictions. Additionally, a scaled mouse-to-human model for developing mild traumatic brain injury (mTBI) using pressure vs. impulse (<i>P</i>–<i>I</i>) graphs demonstrates areas of concern in the collected data. Results show that at distances exceeding the MSD, with personal protective equipment (PPE), and at pressures lower than those considered safe, mTBI is possible. Peak overpressures were measured to be 2.5 times higher than safety thresholds and impulses as high as 274 kPa ms. Confined area detonations produced 1.2–1.4 times greater pressures than open-air detonation measurements. Individuals who undergo breaching training will likely experience multiple exposures of this nature throughout their career, often occurring in rapid succession.</p></div>","PeriodicalId":775,"journal":{"name":"Shock Waves","volume":"34 4","pages":"303 - 314"},"PeriodicalIF":1.7,"publicationDate":"2024-08-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142195489","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Shock WavesPub Date : 2024-08-24DOI: 10.1007/s00193-024-01194-1
Y. Kurosaka, K. Shimamura
{"title":"Microwave radar diagnostics of piston motion in a free-piston-driven expansion tube","authors":"Y. Kurosaka, K. Shimamura","doi":"10.1007/s00193-024-01194-1","DOIUrl":"10.1007/s00193-024-01194-1","url":null,"abstract":"<div><p>Application of microwave radar is a useful approach to gauge piston motion in a free-piston driver. One difficulty associated with conventional microwave technique is its spatial resolution during rapid velocity shifts at diaphragm rupture timings. This study, while departing from the standard practice of analyzing standing wave peaks, introduces an alternative by examining the phase shift of the microwave in-phase and quadrature signals. A compact free-piston-driven expansion tube, MX6.0, is used as the test bed for this technique. A microwave frequency of 4.2 GHz is used to take measurements in a compression tube with a diameter of 50 mm and a length of 2.0 m, tracking the motion of the piston. After arranging the microwave radar systems, the piston velocity and displacement trajectory are measured. Compared to the lower-resolution measurements using conventional microwave wavelength intervals, the use of microwave phase allowed for an exceptionally high spatial resolution in analyzing the piston motion.</p></div>","PeriodicalId":775,"journal":{"name":"Shock Waves","volume":"34 5","pages":"465 - 474"},"PeriodicalIF":1.7,"publicationDate":"2024-08-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s00193-024-01194-1.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142195490","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Shock WavesPub Date : 2024-07-21DOI: 10.1007/s00193-024-01192-3
N. Khobragade, J. Gustavsson, R. Kumar
{"title":"Characterization of a supersonic mixed-compression air intake at high back pressures","authors":"N. Khobragade, J. Gustavsson, R. Kumar","doi":"10.1007/s00193-024-01192-3","DOIUrl":"10.1007/s00193-024-01192-3","url":null,"abstract":"<div><p>The back pressure rise in a supersonic air intake could affect the engine performance and, in extreme conditions, result in a catastrophic unstart phenomenon. The present study compares different back pressure states that occur during an unstart of a mixed-compression air intake at Mach 3 using a fast-response pressure-sensitive paint, with an emphasis on the isolator flow. At low back pressure, the isolator dynamics is strongly correlated with the unsteadiness around the external compression corner. At high back pressure, a normal shock train dictates the isolator flowfield from its leading shock foot downstream. At the onset of unstart, an oblique shock train transpires involving large-scale flow separation, boundary layer thickening, and mitigated unsteadiness at the isolator floor. Like in previous studies, the prominence of low-frequency unsteadiness and upstream wave propagation is observed at high back pressure. However, in addition, the present study shows strong upstream communication of back pressure in a narrow frequency band through acoustic mechanisms, that eventually leads to the intake unstart. At the onset of unstart, the prominent frequency varies linearly along the isolator length, matching closely with the half-wave resonator model. Suppressing the oscillations at the preferred frequencies could be a promising control strategy to mitigate or delay intake unstart. When the intake unstarts, a 3D bifurcated shock stands at the inlet and the unsteady flow spillage takes place around oblique shocks off the sidewalls at low frequencies.</p></div>","PeriodicalId":775,"journal":{"name":"Shock Waves","volume":"34 5","pages":"475 - 496"},"PeriodicalIF":1.7,"publicationDate":"2024-07-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141741243","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Shock WavesPub Date : 2024-07-17DOI: 10.1007/s00193-024-01189-y
G.-P. Zéhil
{"title":"Investigating the blast shielding effect of the Beirut silos","authors":"G.-P. Zéhil","doi":"10.1007/s00193-024-01189-y","DOIUrl":"10.1007/s00193-024-01189-y","url":null,"abstract":"<div><p>The Beirut port explosion on August 4, 2020, caused extensive destruction and significant casualties, prompting inquiries into its scale and impact on neighboring structures. Speculation arose regarding the role of the nearby port silos in shielding western Beirut from the blast. This study leverages insights from previous research and uses a tailored blast wave propagation model to settle the debate on the silos’ effectiveness in mitigating blast impacts. The analysis challenges prevailing notions: firstly, that the silos offered substantial protection, and secondly, the assumption linking the transient “window” phenomenon in the Wilson cloud to a similar opening in the preceding pressure front. Contrary to expectation, the pressure at the shock front remains continuous, albeit lower on the leeward side behind the silos. Downstream lateral regions experience pressure amplification due to the constructive interference of waves diffracted around the silos, with significant attenuation observed close (10 m) behind them—approximately 12%, 58%, and 2% of free-air values for overpressure, specific impulse, and specific energy, respectively. However, this shielding effect diminishes with distance, with the blast wave intensity largely restored at 450 m. Consequently, the silos’ shadowing effect was limited to nearby port structures and part of the Lebanese navy base, which still incurred severe damage. The lesser impact on western Beirut is attributed to its greater distance from the explosion rather than the silos’ protective influence. These findings suggest a reevaluation of urban disaster mitigation strategies, emphasizing geographical positioning over structural barriers and advocating for a holistic approach to urban resilience.</p></div>","PeriodicalId":775,"journal":{"name":"Shock Waves","volume":"34 3","pages":"227 - 235"},"PeriodicalIF":1.7,"publicationDate":"2024-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s00193-024-01189-y.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141720592","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Shock WavesPub Date : 2024-07-13DOI: 10.1007/s00193-024-01177-2
S. W. Cheung, Y. Choi, H. K. Springer, T. Kadeethum
{"title":"Data-scarce surrogate modeling of shock-induced pore collapse process","authors":"S. W. Cheung, Y. Choi, H. K. Springer, T. Kadeethum","doi":"10.1007/s00193-024-01177-2","DOIUrl":"10.1007/s00193-024-01177-2","url":null,"abstract":"<div><p>Understanding the mechanisms of shock-induced pore collapse is of great interest in various disciplines in sciences and engineering, including materials science, biological sciences, and geophysics. However, numerical modeling of the complex pore collapse processes can be costly. To this end, a strong need exists to develop surrogate models for generating economic predictions of pore collapse processes. In this work, we study the use of a data-driven reduced-order model, namely dynamic mode decomposition, and a deep generative model, namely conditional generative adversarial networks, to resemble the numerical simulations of the pore collapse process at representative training shock pressures. Since the simulations are expensive, the training data are scarce, which makes training an accurate surrogate model challenging. To overcome the difficulties posed by the complex physics phenomena, we make several crucial treatments to the plain original form of the methods to increase the capability of approximating and predicting the dynamics. In particular, physics information is used as indicators or conditional inputs to guide the prediction. In realizing these methods, the training of each dynamic mode composition model takes only around 30 s on CPU. In contrast, training a generative adversarial network model takes 8 h on GPU. Moreover, using dynamic mode decomposition, the final-time relative error is around 0.3% in the reproductive cases. We also demonstrate the predictive power of the methods at unseen testing shock pressures, where the error ranges from 1.3 to 5% in the interpolatory cases and 8 to 9% in extrapolatory cases.</p></div>","PeriodicalId":775,"journal":{"name":"Shock Waves","volume":"34 3","pages":"237 - 256"},"PeriodicalIF":1.7,"publicationDate":"2024-07-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141608358","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Shock WavesPub Date : 2024-07-02DOI: 10.1007/s00193-024-01185-2
W. Perkowski, A. Bilar, M. Augustyn, M. Kawalec
{"title":"Air-breathing rotating detonation engine supplied with liquid kerosene: propulsive performance and combustion stability","authors":"W. Perkowski, A. Bilar, M. Augustyn, M. Kawalec","doi":"10.1007/s00193-024-01185-2","DOIUrl":"https://doi.org/10.1007/s00193-024-01185-2","url":null,"abstract":"<p>Experimental results are presented for a rotating detonation engine supplied with liquid kerosene and preheated air without liquid or gaseous additions to the propellant mixture. Various combustion modes for the generic combustor geometry design were observed—from deflagration, through pulsed combustion and high-frequency instabilities, to stable detonation propagation. Attention was paid to detonation stability (if present), its characteristics, and the propulsive performance of the combustor with a focus on specific thrust and pressure gain through thrust and outlet total pressure measurement. These parameters measured for the observed modes were compared. The stability of the detonation combustion proved not to be critical to achieve high performance of the combustion chamber. For example, high performance was achieved for combustion modes with high-frequency instabilities.</p>","PeriodicalId":775,"journal":{"name":"Shock Waves","volume":"159 1","pages":""},"PeriodicalIF":2.2,"publicationDate":"2024-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141504357","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Shock WavesPub Date : 2024-06-24DOI: 10.1007/s00193-024-01181-6
S. Kohama, T. Ito, N. Tsuboi, K. Ozawa, A. K. Hayashi
{"title":"Two-dimensional detailed numerical simulation of ammonia/hydrogen/air detonation: hydrogen concentration effects and transverse detonation wave structure","authors":"S. Kohama, T. Ito, N. Tsuboi, K. Ozawa, A. K. Hayashi","doi":"10.1007/s00193-024-01181-6","DOIUrl":"https://doi.org/10.1007/s00193-024-01181-6","url":null,"abstract":"<p>Numerical simulations on ammonia/hydrogen/air detonation are performed using a detailed reaction model to investigate the cellular instability and detonation dynamics as a function of hydrogen content. The UT-LCS model that includes 32 species and 213 elementary reactions is used in the present simulations. The fifth-order target compact nonlinear scheme captured the unstable detonation dynamics and the complicated flow structure including the propagation of a sub-transverse wave. The simulation performed with different hydrogen dilutions shows that the detonation propagates at the Chapman–Jouguet velocity for all cases, and the cell size for the ammonia/hydrogen mixing ratio <span>(alpha =0.3)</span> becomes approximately 10 times larger than that for <span>(alpha =1.0)</span> (hydrogen/air mixture). A transverse detonation produces a finescale cellular structure on the computed maximum pressure history. This complex shock formation is similar to those of a spinning detonation and two-dimensional propane/oxygen detonation. The cellular irregularity increases with decreasing hydrogen content because ammonia destabilizes the detonation cellular structure with a reduced activation energy of more than approximately 8.\u0000</p>","PeriodicalId":775,"journal":{"name":"Shock Waves","volume":"2016 1","pages":""},"PeriodicalIF":2.2,"publicationDate":"2024-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141504358","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Shock WavesPub Date : 2024-06-21DOI: 10.1007/s00193-024-01182-5
F. Veiga-López, L. Faria, J. Melguizo-Gavilanes
{"title":"Heat and momentum losses in ({text {H}}_{2})–({text {O}}_{2})–({text {N}}_{2}/{textrm{Ar}}) detonations: on the existence of set-valued solutions with detailed thermochemistry","authors":"F. Veiga-López, L. Faria, J. Melguizo-Gavilanes","doi":"10.1007/s00193-024-01182-5","DOIUrl":"10.1007/s00193-024-01182-5","url":null,"abstract":"<div><p>The effect of heat and momentum losses on the steady solutions admitted by the reactive Euler equations with sink/source terms is examined for stoichiometric hydrogen–oxygen mixtures. Varying degrees of nitrogen and argon dilution are considered in order to access a wide range of effective activation energies, <span>(E_{textrm{a,eff}}/R_{textrm{u}}T_{0})</span>, when using detailed thermochemistry. The main results of the study are discussed via detonation velocity-friction coefficient (<i>D</i>–<span>(c_{textrm{f}})</span>) curves. The influence of the mixture composition is assessed, and classical scaling for the prediction of the velocity deficits, <span>(D(c_{textrm{f,crit}})/D_{textrm{CJ}})</span>, as a function of the effective activation energy, <span>({E}_{textrm{a,eff}}/R_{textrm{u}} T_{0})</span>, is revisited. Notably, a map outlining the regions where <i>set-valued</i> solutions exist in the <span>(E_{textrm{a,eff}}/R_{textrm{u}}T_{0}text {--}{alpha })</span> space is provided, with <span>(alpha )</span> denoting the momentum–heat loss similarity factor, a free parameter in the current study.</p></div>","PeriodicalId":775,"journal":{"name":"Shock Waves","volume":"34 3","pages":"273 - 283"},"PeriodicalIF":1.7,"publicationDate":"2024-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s00193-024-01182-5.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141504359","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Shock WavesPub Date : 2024-06-03DOI: 10.1007/s00193-024-01178-1
R. Zheng, J. Li, E. Gong, Q. Qin, Z. Feng
{"title":"Numerical investigation of the unsteady flow and wave dynamics in a wave rotor combustor","authors":"R. Zheng, J. Li, E. Gong, Q. Qin, Z. Feng","doi":"10.1007/s00193-024-01178-1","DOIUrl":"10.1007/s00193-024-01178-1","url":null,"abstract":"<div><p>The pressure gain combustion in wave rotors has the potential to significantly enhance the performance of gas turbine engines. Wave rotor design focuses on understanding the complex behavior of rotating channels, which is challenging due to high rotational speeds. To investigate the influence of different working conditions on the unsteady process within the wave rotor combustor, a simplified 24-channel model was established to study both the unsteady flow and the wave dynamics. The calculations indicate that, for the current port position adopted and a rotor speed of 4000 rpm, backflow occurs at the inlet port for various inlet pressures. By analyzing the working sequence of the wave rotor combustor, it is found that the inlet port does not close in time when the pre-compression wave returns. This delay results in reflected expansion waves or compression waves moving within the channel, which affect a portion of the pressure gain, leading to a damped sinusoidal trend in the pressure profiles within the channel. The optimal pre-pressurization effect can be achieved at a rotor speed of 2000 rpm for the test conditions considered, and the total pressure gain achieved was 6.3%. By adding hot-jet ignition, it is found that the shock wave and flame interact at least five times in the current simulation. The shock–flame interaction can greatly accelerate the process of chemical reactions. After the fourth interaction, the shock wave achieved local coupling with the flame, forming a local high-pressure area of 4 bar, verifying the effectiveness of the wave rotor as a constant-volume supercharging device.</p></div>","PeriodicalId":775,"journal":{"name":"Shock Waves","volume":"34 3","pages":"257 - 271"},"PeriodicalIF":1.7,"publicationDate":"2024-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141256999","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Shock WavesPub Date : 2024-06-03DOI: 10.1007/s00193-024-01164-7
S. Siatkowski, K. Wacko, J. Kindracki
{"title":"Predicting detonation cell size of biogas–oxygen mixtures using machine learning models","authors":"S. Siatkowski, K. Wacko, J. Kindracki","doi":"10.1007/s00193-024-01164-7","DOIUrl":"https://doi.org/10.1007/s00193-024-01164-7","url":null,"abstract":"<p>Detonation cell size is a very important parameter describing the detonation process, used both for explosion safety analysis and for the design of detonation combustion chambers. Typically it has been studied either experimentally or by CFD simulations; both options are costly in terms of money and time. However, progress in the machine learning (ML) methods opened a third way of obtaining cell size. When trained properly, such models are capable of giving rapid, accurate predictions. Utilization of machine learning in the combustion field is gaining more attention from the research community. In this study, the process of training, testing, and evaluation of three different machine learning models for predicting biogas–oxygen mixture detonation cell size is presented. The models include: linear regression (LR), support vector regression (SVR), and neural network (NN). The dataset used for training and testing comes from the experimental studies conducted previously by the authors. It was shown that all the models give very good results with support vector regression proving to be the best.</p>","PeriodicalId":775,"journal":{"name":"Shock Waves","volume":"39 1","pages":""},"PeriodicalIF":2.2,"publicationDate":"2024-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141256932","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}