Shock Waves最新文献

筛选
英文 中文
Prediction model for the risk of auditory and vestibular disfunction caused by a blast wave 爆炸波导致听觉和前庭功能障碍风险的预测模型
IF 1.7 4区 工程技术
Shock Waves Pub Date : 2024-05-31 DOI: 10.1007/s00193-024-01168-3
J. Zhang, K. Chen, G. Li, W. Chen, Z. Duan, J. Kang, X. Liu, S. Zhang, H. Gan, S. Zhou, C. Weng, C. Ma, Y. Liu, T. Zhou, J. Wang
{"title":"Prediction model for the risk of auditory and vestibular disfunction caused by a blast wave","authors":"J. Zhang,&nbsp;K. Chen,&nbsp;G. Li,&nbsp;W. Chen,&nbsp;Z. Duan,&nbsp;J. Kang,&nbsp;X. Liu,&nbsp;S. Zhang,&nbsp;H. Gan,&nbsp;S. Zhou,&nbsp;C. Weng,&nbsp;C. Ma,&nbsp;Y. Liu,&nbsp;T. Zhou,&nbsp;J. Wang","doi":"10.1007/s00193-024-01168-3","DOIUrl":"10.1007/s00193-024-01168-3","url":null,"abstract":"<div><p>Blast deafness and balance disorders are common consequences of modern warfare and terrorist actions. A predictive evaluation system can assist commanders in quickly gathering information on the incapacitation of combat personnel. However, a critical challenge to this goal was to clarify the dose–response relationship between the blast parameters and the severity of auditory and vestibular dysfunction. This paper describes the algorithms for a prediction model. We performed blast experiments to obtain data on animal auditory/vestibular dysfunction under different overpressures. Peak overpressure and positive phase duration of the blast wave were obtained by pressure measurements. The severity of auditory and vestibular dysfunction was established by the auditory brainstem response test, behavioral rating, and vestibular-evoked myogenic potentials tests. Test data were analyzed using receiver operating characteristic (ROC) curves and logistic regression analysis to obtain the overpressure limits for auditory/vestibular function and logistic regression curves for severity separately. The ROC curve analysis showed that the overpressure limit for the auditory function was 32.635 kPa and the vestibular function was 96.275 kPa. Logistic regression fitted curves illustrated the dose–response relationship between the coefficient <i>K</i>, normalized by peak overpressure and positive phase duration, and the risk probability of auditory and vestibular disfunction. The prediction model for the risk of auditory and vestibular disfunction severity (mild/moderate/severe) has been established based on the overpressure limit and dose–response relationship.</p></div>","PeriodicalId":775,"journal":{"name":"Shock Waves","volume":"34 4","pages":"327 - 338"},"PeriodicalIF":1.7,"publicationDate":"2024-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141188927","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Neuronal function spontaneously recovers in organotypic hippocampal slice cultures after repetitive exposure to occupational-level shock waves 重复暴露于职业级冲击波后,有机体海马切片培养物中的神经元功能会自发恢复
IF 1.7 4区 工程技术
Shock Waves Pub Date : 2024-05-30 DOI: 10.1007/s00193-024-01179-0
C. Y. Kim, N. Varghese, M. Kleinberger, B. Morrison III
{"title":"Neuronal function spontaneously recovers in organotypic hippocampal slice cultures after repetitive exposure to occupational-level shock waves","authors":"C. Y. Kim,&nbsp;N. Varghese,&nbsp;M. Kleinberger,&nbsp;B. Morrison III","doi":"10.1007/s00193-024-01179-0","DOIUrl":"10.1007/s00193-024-01179-0","url":null,"abstract":"<div><p>Blast-induced traumatic brain injury has long been a prevalent health issue. There is growing concern for repeated exposures to low-level blasts with studies suggesting effects on neurological impairments and long-term health problems. The purpose of this study was to expand our understanding of the neurophysiological consequences of repetitive mild blast from a range of occupational exposure levels. We studied shock waves of peak overpressures ranging from 45 to 270 kPa and impulses of 54 to 295 kPa<span>(cdot )</span>ms. We observed the effects of these shock waves in organotypic hippocampal slice cultures generated from neonatal rat pups. This model allowed us to isolate the effects of blast on neuronal function without the confounding factors of scaling and peripheral systemic input. We found that blast severity and inter-blast interval were both integral in understanding non-injurious limits for blast exposure. With higher blast severity, the inter-blast interval needed to be extended to avoid deficits in long-term potentiation (LTP), a form of synaptic plasticity. Furthermore, blast exposures too close in time synergistically affected LTP negatively, producing a dose response with more exposures leading to greater deficits in LTP. Overall, even the lowest blast tested was capable of producing functional deficits under the appropriate conditions. These findings can aid in the improvement of safety and training protocols to set occupational exposure limits to avoid neurological impairments and negative long-term health effects.</p></div>","PeriodicalId":775,"journal":{"name":"Shock Waves","volume":"34 4","pages":"369 - 379"},"PeriodicalIF":1.7,"publicationDate":"2024-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141188744","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Detonation wave reflection over a concave–convex cylindrical wedge 凹凸圆柱楔上的爆破波反射
IF 1.7 4区 工程技术
Shock Waves Pub Date : 2024-05-30 DOI: 10.1007/s00193-024-01176-3
L. Q. Wang, H. H. Ma
{"title":"Detonation wave reflection over a concave–convex cylindrical wedge","authors":"L. Q. Wang,&nbsp;H. H. Ma","doi":"10.1007/s00193-024-01176-3","DOIUrl":"10.1007/s00193-024-01176-3","url":null,"abstract":"<div><p>The transition between Mach reflection (MR) and regular reflection (RR) of gaseous detonations in argon-diluted stoichiometric hydrogen–oxygen was investigated experimentally using a wedge with a concave–convex surface. The continuous MR triple-point trajectory was recorded using the smoked foil technique, from which the transition angles for <span>({textrm{MR}}leftrightarrow {textrm{RR}})</span> transitions could be determined. Similar to the reflection of a non-reacting shock wave, the non-stationary hysteresis phenomenon was found for detonation reflection, i.e., the <span>({textrm{MR}}rightarrow {textrm{RR}})</span> transition angle was much larger than that for <span>({textrm{RR}} rightarrow {textrm{MR}})</span> transition. In addition, the <span>({textrm{RR}} rightarrow {textrm{MR}})</span> transition angle on the convex surface was smaller than that for detonation reflection over a single half-cylinder. This is opposite to what is found for non-reacting shock wave reflection.</p></div>","PeriodicalId":775,"journal":{"name":"Shock Waves","volume":"34 3","pages":"285 - 289"},"PeriodicalIF":1.7,"publicationDate":"2024-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141188742","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Investigation into helmet–head shock wave interactions at low overpressures through free-field blasts and schlieren imagery 通过自由场爆破和裂隙成像研究低过压时头盔与头顶冲击波的相互作用
IF 1.7 4区 工程技术
Shock Waves Pub Date : 2024-05-22 DOI: 10.1007/s00193-024-01167-4
C. J. H. Thomas, C. E. Johnson
{"title":"Investigation into helmet–head shock wave interactions at low overpressures through free-field blasts and schlieren imagery","authors":"C. J. H. Thomas,&nbsp;C. E. Johnson","doi":"10.1007/s00193-024-01167-4","DOIUrl":"10.1007/s00193-024-01167-4","url":null,"abstract":"<div><p>Brain injuries in warfighters due to low-level blasts, even while wearing a helmet, are common. Understanding how the form of a shock wave changes when impacting a head donning a helmet may present solutions to reducing shock loading on the head, thereby reducing the prevalence of blast-induced traumatic brain injury. A manikin with PCB piezoelectric transducers throughout the head was exposed to low-pressure free-field blasts using an RDX-based explosive charge designed to output a side-on overpressure of 4 pounds per square inch (psi) [27.5 kilopascals (kPa)] with and without a helmet. Orientations of 0, 45, 90, 135, and 180 degrees were evaluated to observe changes in overpressure versus time (<i>p</i>(<i>t</i>)) waveforms. The waveforms were compared to schlieren imagery in which a shock wave impacted 3D-printed silhouettes of a warfighter donning a helmet, showing shock wave flow under the helmet at 0-, 90-, and 180-degree orientations. It was found that trapped shock waves under the helmet create regions of high overpressure and increase the duration of exposure, resulting in higher impulses imparted onto the head. While wearing a helmet, the 90-degree orientation resulted in the greatest reduction in overall peak overpressure, with an 8% decrease compared to the 0-degree orientation. In contrast, the 180-degree orientation led to an increase by 30%. For impulse, the 90-degree orientation showed the greatest reduction, with a decrease of 21%. The 0-degree orientation had the highest overall impulse among all orientations when wearing a helmet.</p></div>","PeriodicalId":775,"journal":{"name":"Shock Waves","volume":"34 4","pages":"399 - 412"},"PeriodicalIF":1.7,"publicationDate":"2024-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141109025","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Detonation inhibition using retardant weight analysis for halogenated compounds 利用卤化化合物的阻燃剂重量分析法抑制爆燃
IF 2.2 4区 工程技术
Shock Waves Pub Date : 2024-05-13 DOI: 10.1007/s00193-024-01175-4
R. K. Singh, A. Dahake, A. V. Singh
{"title":"Detonation inhibition using retardant weight analysis for halogenated compounds","authors":"R. K. Singh, A. Dahake, A. V. Singh","doi":"10.1007/s00193-024-01175-4","DOIUrl":"https://doi.org/10.1007/s00193-024-01175-4","url":null,"abstract":"<p>The current study numerically evaluates the detonation inhibition effects of a range of halogenated compounds on hydrogen-air gaseous detonations. The halogenated compounds investigated in this research encompass halogen acids (HI, HBr, HCl, HF), halomethanes (<span>(hbox {CH}_{{3}}hbox {I})</span>, <span>(hbox {CH}_{{3}}hbox {Br})</span>, <span>(hbox {CH}_{{3}}hbox {Cl})</span>, <span>(hbox {CH}_{{3}}hbox {F})</span>), haloethenes (<span>(hbox {C}_{{2}}hbox {H}_{{3}}hbox {I})</span>, <span>(hbox {C}_{{2}}hbox {H}_{{3}}hbox {Br})</span>, <span>(hbox {C}_{{2}}hbox {H}_{{3}}hbox {Cl})</span>, <span>(hbox {C}_{{2}}hbox {H}_{{3}}hbox {F})</span>), haloethanes (<span>(hbox {C}_{{2}}hbox {H}_{{5}}hbox {I})</span>, <span>(hbox {C}_{{2}}hbox {H}_{{5}}hbox {Br})</span>, <span>(hbox {C}_{{2}}hbox {H}_{{5}}hbox {Cl})</span>, <span>(hbox {C}_{{2}}hbox {H}_{{5}}hbox {F})</span>), and complex halogenated compounds (<span>(hbox {CF}_{{3}}hbox {I})</span>, <span>(hbox {CF}_{{3}}hbox {Br})</span>, <span>(hbox {CF}_{{3}}hbox {Cl})</span>, <span>(hbox {CF}_{4})</span>). The study employs a one-dimensional ZND model with detailed chemical kinetics to examine the impact on detonation propagation by adding these halogenated compounds to hydrogen-air mixtures. The effectiveness of these inhibitors is evaluated based on their capacity to increase the induction length, the amount of inhibitor needed to attenuate a detonation wave, and their influence on the detonability of the gaseous mixture under both lean and rich conditions. The results indicate that several halogenated compounds exhibit superior inhibition properties compared to Halon 1301 (<span>(hbox {CF}_{{3}}hbox {Br})</span>). Specifically, <span>(hbox {C}_{{2}}hbox {H}_{{5}}hbox {Br})</span> leads to the most significant increase in the induction length, with HBr and <span>(hbox {C}_{{2}}hbox {H}_{{5}}hbox {I})</span> following closely, particularly at 20,000 ppmv concentration levels. However, it is worth noting that the inhibition efficiency also varies depending on the concentration of the inhibitor added to the gaseous <span>(hbox {H}_{{2}})</span>-air mixture. Moreover, based on retardant weight analysis, fluorinated compounds were found to be the most effective inhibitors, followed by chlorinated, brominated, and iodinated compounds across all categories of halogenated inhibitors.</p>","PeriodicalId":775,"journal":{"name":"Shock Waves","volume":"77 1","pages":""},"PeriodicalIF":2.2,"publicationDate":"2024-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140931960","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Characteristic timescales for detonation-based rocket propulsion systems 基于爆炸的火箭推进系统的特征时标
IF 2.2 4区 工程技术
Shock Waves Pub Date : 2024-05-06 DOI: 10.1007/s00193-024-01174-5
R. T. Dave, J. R. Burr, M. C. Ross, C. F. Lietz, J. W. Bennewitz
{"title":"Characteristic timescales for detonation-based rocket propulsion systems","authors":"R. T. Dave, J. R. Burr, M. C. Ross, C. F. Lietz, J. W. Bennewitz","doi":"10.1007/s00193-024-01174-5","DOIUrl":"https://doi.org/10.1007/s00193-024-01174-5","url":null,"abstract":"<p>Characteristic timescales for rotating detonation rocket engines (RDREs) are described in this study. Traveling detonations within RDREs create a complex reacting flow field involving processes spanning a range of timescales. Specifically, characteristic times associated with combustion kinetics (detonation and deflagration), injection (e.g., flow recovery), flow (e.g., mixture residence time), and acoustic modes are quantified using first-principle analyses to characterize the RDRE-relevant physics. Three fuels are investigated including methane, hydrogen, and rocket-grade kerosene RP-2 for equivalence ratios from 0.25 to 3 and chamber pressures from 0.51 to 10.13 MPa, as well as for a case study with a standard RDRE geometry. Detonation chemical timescales range from 0.05 to 1000 ns for the induction and reaction times; detonation-based chemical equilibrium, however, spans a larger range from approximately 0.5 to <span>(200~upmu )</span>s for the flow condition and fuel. This timescale sensitivity has implications regarding maximizing detonative heat release, especially with pre-detonation deflagration in real systems. Representative synthetic detonation wave profiles are input into a simplified injector model that describes the periodic choking/unchoking process and shows that injection timescales typically range from 5 to <span>(50~upmu )</span>s depending on injector stiffness; for detonations and low-stiffness injectors, target reactant flow rates may not recover prior to the next wave arrival, preventing uniform mixing. This partially explains the detonation velocity deficit observed in RDREs, as with the standard RDRE analyzed in this study. Finally, timescales tied to chamber geometry including residence time are on the order of 100–10,000 <span>(upmu )</span>s and acoustic resonance times are 10–<span>(1000~upmu )</span>s. Overall, this work establishes characteristic time and length scales for the relevant physics, a valuable step in developing tools to optimize future RDRE designs.</p>","PeriodicalId":775,"journal":{"name":"Shock Waves","volume":"63 1","pages":""},"PeriodicalIF":2.2,"publicationDate":"2024-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140887057","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Evaluating evidence supporting the relevancy of 4 psi as a blast overpressure value associated with brain health and performance outcomes following low-level blast overpressure exposure 评估支持 4 psi 爆炸超压值与低水平爆炸超压暴露后大脑健康和性能结果相关性的证据
IF 1.7 4区 工程技术
Shock Waves Pub Date : 2024-04-29 DOI: 10.1007/s00193-024-01170-9
S. S. Sloley, S. M. Turner
{"title":"Evaluating evidence supporting the relevancy of 4 psi as a blast overpressure value associated with brain health and performance outcomes following low-level blast overpressure exposure","authors":"S. S. Sloley,&nbsp;S. M. Turner","doi":"10.1007/s00193-024-01170-9","DOIUrl":"10.1007/s00193-024-01170-9","url":null,"abstract":"<div><p>Evidence suggests that low-level blast (LLB) overpressure exposure from military heavy weapons training is associated with subclinical adverse brain health and performance (H &amp;P) outcomes. Existing DOD safety policies related to blast overpressure exposure are not specific to LLB-related brain health effects. This study sought to synthesize the available literature and analyze the relevancy of a specific blast metric to LLB exposures and the manifestation of adverse brain H &amp;P outcomes. A literature search yielded 311 unique articles, from which 220 were identified as human studies on LLB published from 2010 to 2021. After more exhaustive exclusion criteria were applied, 14 articles met the criteria for inclusion. Findings on brain H &amp;P changes were examined in relation to quantified LLB measurements (e.g., peak overpressure) to identify trends. Overall, the included studies suggested that alterations of reaction time, a metric for neurocognitive performance, as well as symptom reporting can occur following cumulative LLB exposures above 4 psi (27.6 kPa). Biomarkers and neurosensory changes have not demonstrated consistent associations with LLB exposures. These findings suggest that cumulative blast overpressure exposures above 4 psi (27.6 kPa) based on current measurement methodologies for body-worn sensors may be associated with adverse brain H &amp;P outcomes. Current research efforts seek to better quantify LLB exposure, the relationships between LLB (e.g., intensity, duration, dose) and brain health, as well as to assess brain H &amp;P domains more comprehensively. These efforts will serve to promote a better understanding of the interaction between LLB exposures and adverse brain H &amp;P outcomes.</p></div>","PeriodicalId":775,"journal":{"name":"Shock Waves","volume":"34 4","pages":"293 - 302"},"PeriodicalIF":1.7,"publicationDate":"2024-04-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140809583","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Quantitative proteomic profiling in brain subregions of mice exposed to open-field low-intensity blast reveals position-dependent blast effects 暴露于开阔地低强度爆炸的小鼠大脑亚区域的定量蛋白质组特征分析揭示了位置依赖性爆炸效应
IF 1.7 4区 工程技术
Shock Waves Pub Date : 2024-04-25 DOI: 10.1007/s00193-024-01169-2
M. Jackson, S. Chen, P. Liu, M. Langenderfer, C. Li, H. R. Siedhoff, A. Balderrama, R. Li, C. E. Johnson, C. M. Greenlief, I. Cernak, R. G. DePalma, J. Cui, Z. Gu
{"title":"Quantitative proteomic profiling in brain subregions of mice exposed to open-field low-intensity blast reveals position-dependent blast effects","authors":"M. Jackson,&nbsp;S. Chen,&nbsp;P. Liu,&nbsp;M. Langenderfer,&nbsp;C. Li,&nbsp;H. R. Siedhoff,&nbsp;A. Balderrama,&nbsp;R. Li,&nbsp;C. E. Johnson,&nbsp;C. M. Greenlief,&nbsp;I. Cernak,&nbsp;R. G. DePalma,&nbsp;J. Cui,&nbsp;Z. Gu","doi":"10.1007/s00193-024-01169-2","DOIUrl":"10.1007/s00193-024-01169-2","url":null,"abstract":"<div><p>The neurological consequences of combat blast-induced neurotrauma (BINT) pose important clinical concerns for military service members and veterans. Previous studies have shown that low-intensity blast (LIB) results in BINT with multifaceted characteristics in mice exposed to open-field blast in prone position. Although the prone position is natural for rodents, experimental models of blast using this position do not represent common scenarios of human standing while being exposed to blast during deployment or military training. In this study, we used our previously developed BINT mouse model of open-field LIB with mice in an upright position and then used quantitative proteomics and multiple bioinformatic approaches to analyze brain tissue taken from multiple subregions during the acute post-injury phase. We identified: (1) region-specific BINT-induced proteome changes, which were significantly and differently influenced by animal positioning (upright vs. prone): the upright positioning caused more significant protein alterations in cortex and cerebellum, which were less significant in striatum as compared to prone position; (2) synapse- and mitochondrion-related damage contributed to BINT in both positions; and (3) some molecular signatures were exclusively and/or oppositely regulated in two positions. This study delineates the molecular signatures of the position-dependent blast effects, indicating the importance of brain–body position for BINT translational studies and for modeling the location and extent of position-related blast injuries.</p></div>","PeriodicalId":775,"journal":{"name":"Shock Waves","volume":"34 4","pages":"381 - 398"},"PeriodicalIF":1.7,"publicationDate":"2024-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140657665","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Blast injury model estimates from multiple overpressure measurement locations on a single person-borne device 从单人携带装置上的多个超压测量位置得出爆炸伤害模型估计值
IF 1.7 4区 工程技术
Shock Waves Pub Date : 2024-04-24 DOI: 10.1007/s00193-024-01166-5
J.-P. Dionne, J. Levine, A. Makris
{"title":"Blast injury model estimates from multiple overpressure measurement locations on a single person-borne device","authors":"J.-P. Dionne,&nbsp;J. Levine,&nbsp;A. Makris","doi":"10.1007/s00193-024-01166-5","DOIUrl":"10.1007/s00193-024-01166-5","url":null,"abstract":"<div><p>Towards a better characterization of the increasing blast overpressure threat, person-borne sensors are being considered for large military population segments potentially subjected to explosive blast and firing of crew served weapons. Training and field data, tracked longitudinally across a soldier’s entire career, can help with the diagnosis of blast injuries and the improvement of standard operating procedures for both explosive forced entry and large weapons firing. However, a current challenge with person-born blast dosimeters resides with the position of the overpressure sensors themselves. Often, the sensors are not fully exposed to the blast locally, resulting in pressure measurements not representative of the blast conditions surrounding an individual. While fielding multiple individual and uncoupled dosimeter units around the body increases the likeliness of catching the representative blast exposure, issues arise from differences in internal clock, potential partial triggering, and the complexity of merging data from different sources. Instead, integrating multiple overpressure sensors pointing in different directions, within a single device that captures and records all data simultaneously, proves highly beneficial for data analysis and interpretation. This paper presents algorithms that combine the overpressure data collected from such multiple coupled sensors for each blast event to minimize the effect of blast directionality. In particular, an algorithm estimating the equivalent <i>side-on</i> blast overpressure is presented, facilitating injury estimates from existing established blast injury models adapted for the outputs from the blast dosimeters. An algorithm is also presented that estimates the orientation or provenance of an explosive blast relative to the soldier.</p></div>","PeriodicalId":775,"journal":{"name":"Shock Waves","volume":"34 4","pages":"339 - 356"},"PeriodicalIF":1.7,"publicationDate":"2024-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140661972","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Development of a vapor-based method for seeding alkali metals in shock tube facilities 在冲击管设施中开发基于蒸汽的碱金属播种方法
IF 1.7 4区 工程技术
Shock Waves Pub Date : 2024-04-15 DOI: 10.1007/s00193-024-01165-6
J. A. Vandervort, S. C. Barnes, C. L. Strand, R. K. Hanson
{"title":"Development of a vapor-based method for seeding alkali metals in shock tube facilities","authors":"J. A. Vandervort,&nbsp;S. C. Barnes,&nbsp;C. L. Strand,&nbsp;R. K. Hanson","doi":"10.1007/s00193-024-01165-6","DOIUrl":"10.1007/s00193-024-01165-6","url":null,"abstract":"<div><p>This note presents a vapor-based seeding apparatus, named the external alkali seeding instrument (EASI), which is designed to introduce alkali metal vapors into experimental facilities without using precursors or large auxiliary equipment. The device vaporizes small amounts of alkali metals, potassium in this work, which are then carried away by an inert gas. In a benchtop flow cell, carrier gas flow rate (6–<span>(200~hbox {cm}^3/hbox {s})</span>) and device temperature (150–<span>(250,^{circ }hbox {C})</span>) most strongly affected potassium-vapor concentrations. Higher values of either quantity lead to increased potassium-vapor concentrations. When using the EASI to seed a shock tube experiment, vapor-phase potassium was detected immediately after the incident and reflected shockwaves using a laser absorption diagnostic. Mole fraction time histories stay within a factor of 2 over the test time as compared with those from a precursor-based seeding approach, which may span multiple orders of magnitude. This suggests potassium is nearly homogeneously distributed throughout the test gas. This design can be extended to other low-vapor-pressure elements, such as other alkalis or sulfur, with minimal modifications. The EASI simplifies seeding for laboratory experiments targeting potassium and other alkali metals—enabling advances in fundamental spectroscopy, diagnostic development, and chemical kinetics.</p></div>","PeriodicalId":775,"journal":{"name":"Shock Waves","volume":"34 1","pages":"61 - 67"},"PeriodicalIF":1.7,"publicationDate":"2024-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140575691","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信