Yaquan Fang, Christina Gao, Ying-Ying Li, Jing Shu, Yusheng Wu, Hongxi Xing, Bin Xu, Lailin Xu, Chen Zhou
{"title":"Quantum frontiers in high energy physics","authors":"Yaquan Fang, Christina Gao, Ying-Ying Li, Jing Shu, Yusheng Wu, Hongxi Xing, Bin Xu, Lailin Xu, Chen Zhou","doi":"10.1007/s11433-024-2635-4","DOIUrl":"10.1007/s11433-024-2635-4","url":null,"abstract":"<div><p>Numerous challenges persist in high energy physics (HEP), the addressing of which requires advancements in detection technology, computational methods, data analysis frameworks, and phenomenological designs. We provide a concise yet comprehensive overview of recent progress across these areas, in line with advances in quantum technology. We will discuss the potential of quantum devices in detecting subtle effects indicative of new physics BSM, the transformative role of quantum algorithms and large-scale quantum computers in studying real-time non-perturbative dynamics in the early universe and at colliders, as well as in analyzing complex HEP data. Additionally, we emphasize the importance of integrating quantum properties into HEP experiments to test quantum mechanics at unprecedented high-energy scales and search for hints of new physics. Looking ahead, the continued integration of resources to fully harness these evolving technologies will enhance our efforts to deepen our understanding of the fundamental laws of nature.</p></div>","PeriodicalId":774,"journal":{"name":"Science China Physics, Mechanics & Astronomy","volume":"68 6","pages":""},"PeriodicalIF":6.4,"publicationDate":"2025-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143856569","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Dynamics of holographic steady flows near a first-order phase transition","authors":"Qian Chen, Yuxuan Liu, Yu Tian, Xiaoning Wu, Hongbao Zhang","doi":"10.1007/s11433-025-2633-y","DOIUrl":"10.1007/s11433-025-2633-y","url":null,"abstract":"<div><p>We investigate the physical properties of steady flows in a holographic first-order phase transition model, extending from the thermodynamics at equilibrium to the real-time dynamics far from equilibrium. Through spinodal decomposition or condensation nuclei, the phase-separated state with non-zero momentum can be achieved. In this scenario, we observe a gap between coexisting phases, arising not only from the variations in energy density, but also from the distinctions in momentum density or longitudinal pressure. These disparities are characterized by flow velocity and latent heat. Furthermore, by introducing an inhomogeneous scalar external source to simulate a fixed obstacle, we reveal the dynamical response of momentum loss in the moving system. Notably, starting from an initial phase-separated state with uniform flow velocity, and subsequently interacting it with an obstacle, we find that the moving high-energy phase exhibits four characteristic dynamical behaviors—rebounding, pinning, passing, and splitting. These behaviors depend on the velocity of the phase and the strength of the obstacle.</p></div>","PeriodicalId":774,"journal":{"name":"Science China Physics, Mechanics & Astronomy","volume":"68 6","pages":""},"PeriodicalIF":6.4,"publicationDate":"2025-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143856654","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Dong Liu, Yang Liu, Haoning Dang, Kai Wang, Bin Zhang, Fei Wang, Zhouyu Liu, Yong Jiang
{"title":"The neutron transport equation in exact differential form","authors":"Dong Liu, Yang Liu, Haoning Dang, Kai Wang, Bin Zhang, Fei Wang, Zhouyu Liu, Yong Jiang","doi":"10.1007/s11433-024-2642-3","DOIUrl":"10.1007/s11433-024-2642-3","url":null,"abstract":"<div><p>Derived from the Boltzmann equation, the neutron transport equation describes the motions and interactions of neutrons with nuclei in nuclear devices such as nuclear reactors. The collision or fission effect are described as integral terms which arrive in an integro-differential neutron transport equation (IDNT). Only for mono-material or simple geometries conditions, elegant approximation can simplify the transport equation to provide analytic solutions. To solve this integro-differential equation becomes a practical engineering challenge. Recent development of deep-learning techniques provides a new approach to solve them but for some complicated conditions, it is also time consuming. To optimize solving the integro-differential equation particularly under the deep-learning method, we propose to convert the integral terms in the integro-differential neutron transport equation into their corresponding antiderivatives, providing a set of fixed solution constraint conditions for these antiderivatives, thus yielding an exact differential neutron transport equation (EDNT). The paper elucidates the physical meaning of the antiderivatives and analyzes the continuity and computational complexity of the new transport equation form. To illustrate the significant advantage of ENDT, numerical validations have been conducted using various numerical methods on typical benchmark problems. The numerical experiments demonstrate that the EDNT is compatible with various numerical methods, including the finite difference method (FDM), finite volume method (FVM), and PINN. Compared to the IDNT, the EDNT offers significant efficiency advantages, with reductions in computational time ranging from several times to several orders of magnitude. This EDNT approach may also be applicable for other integro-differential transport theories such as radiative energy transport and has potential application in astrophysics or other fields.</p></div>","PeriodicalId":774,"journal":{"name":"Science China Physics, Mechanics & Astronomy","volume":"68 7","pages":""},"PeriodicalIF":6.4,"publicationDate":"2025-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143861242","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Experimental implementation of a qubit-efficient variational quantum eigensolver with analog error mitigation on a superconducting quantum processor","authors":"Yuwei Ma, Weiting Wang, Xianghao Mu, Weizhou Cai, Ziyue Hua, Xiaoxuan Pan, Dong-Ling Deng, Rebing Wu, Chang-Ling Zou, Lei Wang, Luyan Sun","doi":"10.1007/s11433-025-2620-6","DOIUrl":"10.1007/s11433-025-2620-6","url":null,"abstract":"<div><p>We experimentally demonstrate a qubit-efficient variational quantum eigensolver (VQE) algorithm using a superconducting quantum processor, employing minimal quantum resources with only a transmon qubit coupled to a high-coherence photonic qubit. By leveraging matrix product states to compress the quantum state representation, we simulate an <i>N</i> + 1-spin circular Ising model with a transverse field. Furthermore, we develop an analog error mitigation approach through zero-noise extrapolation by introducing a precise noise injection technique for the transmon qubit. As a validation, we apply our error-mitigated qubit-efficient VQE in determining the ground state energies of a 4-spin Ising model. Our results demonstrate the feasibility of performing quantum algorithms with minimal quantum resources while effectively mitigating the impact of noise, offering a promising pathway to bridge the gap between theoretical advances and practical implementations on current noisy intermediate-scale quantum devices.</p></div>","PeriodicalId":774,"journal":{"name":"Science China Physics, Mechanics & Astronomy","volume":"68 7","pages":""},"PeriodicalIF":6.4,"publicationDate":"2025-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143861181","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"LHAASO view of the Milky Way","authors":"Elena Amato","doi":"10.1007/s11433-025-2638-5","DOIUrl":"10.1007/s11433-025-2638-5","url":null,"abstract":"","PeriodicalId":774,"journal":{"name":"Science China Physics, Mechanics & Astronomy","volume":"68 7","pages":""},"PeriodicalIF":6.4,"publicationDate":"2025-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143835587","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pingyu Zhu, Yan Wang, Yuxing Du, Miaomiao Yu, Kaikai Zhang, Kun Wang, Ping Xu
{"title":"A fully connected polarization-entangled network via integrated spontaneous four-wave mixing engineering","authors":"Pingyu Zhu, Yan Wang, Yuxing Du, Miaomiao Yu, Kaikai Zhang, Kun Wang, Ping Xu","doi":"10.1007/s11433-025-2628-2","DOIUrl":"10.1007/s11433-025-2628-2","url":null,"abstract":"<div><p>Quantum communication is rapidly developing and is gradually being commercialized due to its technological maturity. Establishing dense communication links among multiple users in a scalable and efficient way is of great significance for realizing a large-scale quantum communication network. Here, we propose a novel scheme to construct a fully connected polarization-entangled network, utilizing the engineering of spontaneous four-wave mixings (SFWMs) and a path-polarization converter. It does not require active optical switches which limit the communication speed, or trusted nodes which lead to potential security risks. The required frequency channels in the network grow linearly with the number of users. We experimentally demonstrate a six-user fully connected network with on-chip SFWM processes motivated by four pumps. Each user in the network receives a frequency channel, and all fifteen connections between the users are implemented simultaneously. Our work opens up a promising scheme to efficiently construct fully connected large-scale networks.</p></div>","PeriodicalId":774,"journal":{"name":"Science China Physics, Mechanics & Astronomy","volume":"68 6","pages":""},"PeriodicalIF":6.4,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143783304","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Advances in calorimetric investigations of glasses science","authors":"Yonghao Sun","doi":"10.1007/s11433-024-2575-8","DOIUrl":"10.1007/s11433-024-2575-8","url":null,"abstract":"","PeriodicalId":774,"journal":{"name":"Science China Physics, Mechanics & Astronomy","volume":"68 6","pages":""},"PeriodicalIF":6.4,"publicationDate":"2025-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143707173","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Zhongwen Feng, Qingquan Jiang, Yi Ling, Xiaoning Wu, Zhangping Yu
{"title":"Symmetric black-to-white hole solutions with a cosmological constant","authors":"Zhongwen Feng, Qingquan Jiang, Yi Ling, Xiaoning Wu, Zhangping Yu","doi":"10.1007/s11433-024-2623-8","DOIUrl":"10.1007/s11433-024-2623-8","url":null,"abstract":"<div><p>For a system with a Hamiltonian constraint, we demonstrate that its dynamics is invariant under different choices of the lapse function, regardless of whether the Hamiltonian incorporates quantum corrections. Applying this observation to the interior of black-to-white holes, we analyze its dynamics with different choices of the lapse function. The results explicitly show that the leading-order expansion of both metrics proposed by Rovelli et al. (Class. Quant. Grav. <b>35</b>, 225003 (2018); Class. Quant. Grav. <b>35</b>, 215010 (2018)) and Ashtekar et al. (Phys. Rev. Lett. <b>121</b>, 241301 (2018); Phys. Rev. D <b>98</b>, 126003 (2018)) exhibit identical behavior near the transition surface. Therefore, in this sense the black-to-white hole model proposed by Rovelli et al., (Class. Quant. Grav. <b>35</b>, 225003 (2018); Class. Quant. Grav. <b>35</b>, 215010 (2018)) may be interpreted as a coarse-grained version of the solution within the framework of loop quantum gravity. The black-to-white hole solutions with exact symmetry between the black hole and white hole regions are constructed by appropriately fixing the quantum parameters in the effective theory of loop quantum gravity. This approach circumvents the issue of amplification of mass, which could arise from a mass difference between the black hole and white hole, and provides a way to link the solutions obtained by minisuperspace quantization to those in the covariant approach. Finally, the black-to-white hole solutions with a cosmological constant are constructed. The numerical solutions for the interior of the black-to-white hole with a cosmological constant are obtained, and their symmetric behavior is also discussed.</p></div>","PeriodicalId":774,"journal":{"name":"Science China Physics, Mechanics & Astronomy","volume":"68 6","pages":""},"PeriodicalIF":6.4,"publicationDate":"2025-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s11433-024-2623-8.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143707168","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Scaling law of launch velocity in laser-induced microparticle impact testing","authors":"Yiping Song, Zhoupeng Gu, Minqiang Jiang, Qiuyun Yin, Chenguang Huang, Xianqian Wu","doi":"10.1007/s11433-024-2612-0","DOIUrl":"10.1007/s11433-024-2612-0","url":null,"abstract":"<div><p>Laser-induced microparticle impact testing (LIPIT) is a useful method for measuring the dynamic mechanical behavior of materials under ultra-high strain rates by accelerating and launching a single microparticle at high velocity. It is important to establish a scaling law for the laser-induced microparticle launching system to optimize its configurations and improve the achievable velocity of the microparticle. In this study, the physical process of laser-induced microparticle launching is analyzed. A scaling law for the launch system is obtained by dimensional analysis. The influence of dominant dimensionless parameters on the dimensionless velocity of the microparticle is then assessed by numerical simulations. The results show that the dimensionless launch velocity of the microparticle increases with increasing dimensionless energy and dimensionless time of the laser pulse and with decreasing dimensionless thickness of metal and elastomer films and the dimensionless mass of the microparticle. Finally, the dimensionless formulas for predicting the velocity of the microparticle of the launch system with thick-metal-film and thin-metal-film configurations are determined, respectively. This study promotes the understanding of the launch mechanisms of LIPIT and provides a guideline for optimizing its configuration to achieve a wide range of impact velocities of the microparticles.</p></div>","PeriodicalId":774,"journal":{"name":"Science China Physics, Mechanics & Astronomy","volume":"68 5","pages":""},"PeriodicalIF":6.4,"publicationDate":"2025-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143716913","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}