{"title":"一阶相变附近全息稳定流动的动力学","authors":"Qian Chen, Yuxuan Liu, Yu Tian, Xiaoning Wu, Hongbao Zhang","doi":"10.1007/s11433-025-2633-y","DOIUrl":null,"url":null,"abstract":"<div><p>We investigate the physical properties of steady flows in a holographic first-order phase transition model, extending from the thermodynamics at equilibrium to the real-time dynamics far from equilibrium. Through spinodal decomposition or condensation nuclei, the phase-separated state with non-zero momentum can be achieved. In this scenario, we observe a gap between coexisting phases, arising not only from the variations in energy density, but also from the distinctions in momentum density or longitudinal pressure. These disparities are characterized by flow velocity and latent heat. Furthermore, by introducing an inhomogeneous scalar external source to simulate a fixed obstacle, we reveal the dynamical response of momentum loss in the moving system. Notably, starting from an initial phase-separated state with uniform flow velocity, and subsequently interacting it with an obstacle, we find that the moving high-energy phase exhibits four characteristic dynamical behaviors—rebounding, pinning, passing, and splitting. These behaviors depend on the velocity of the phase and the strength of the obstacle.</p></div>","PeriodicalId":774,"journal":{"name":"Science China Physics, Mechanics & Astronomy","volume":"68 6","pages":""},"PeriodicalIF":6.4000,"publicationDate":"2025-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Dynamics of holographic steady flows near a first-order phase transition\",\"authors\":\"Qian Chen, Yuxuan Liu, Yu Tian, Xiaoning Wu, Hongbao Zhang\",\"doi\":\"10.1007/s11433-025-2633-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We investigate the physical properties of steady flows in a holographic first-order phase transition model, extending from the thermodynamics at equilibrium to the real-time dynamics far from equilibrium. Through spinodal decomposition or condensation nuclei, the phase-separated state with non-zero momentum can be achieved. In this scenario, we observe a gap between coexisting phases, arising not only from the variations in energy density, but also from the distinctions in momentum density or longitudinal pressure. These disparities are characterized by flow velocity and latent heat. Furthermore, by introducing an inhomogeneous scalar external source to simulate a fixed obstacle, we reveal the dynamical response of momentum loss in the moving system. Notably, starting from an initial phase-separated state with uniform flow velocity, and subsequently interacting it with an obstacle, we find that the moving high-energy phase exhibits four characteristic dynamical behaviors—rebounding, pinning, passing, and splitting. These behaviors depend on the velocity of the phase and the strength of the obstacle.</p></div>\",\"PeriodicalId\":774,\"journal\":{\"name\":\"Science China Physics, Mechanics & Astronomy\",\"volume\":\"68 6\",\"pages\":\"\"},\"PeriodicalIF\":6.4000,\"publicationDate\":\"2025-04-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Science China Physics, Mechanics & Astronomy\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s11433-025-2633-y\",\"RegionNum\":1,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science China Physics, Mechanics & Astronomy","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s11433-025-2633-y","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
Dynamics of holographic steady flows near a first-order phase transition
We investigate the physical properties of steady flows in a holographic first-order phase transition model, extending from the thermodynamics at equilibrium to the real-time dynamics far from equilibrium. Through spinodal decomposition or condensation nuclei, the phase-separated state with non-zero momentum can be achieved. In this scenario, we observe a gap between coexisting phases, arising not only from the variations in energy density, but also from the distinctions in momentum density or longitudinal pressure. These disparities are characterized by flow velocity and latent heat. Furthermore, by introducing an inhomogeneous scalar external source to simulate a fixed obstacle, we reveal the dynamical response of momentum loss in the moving system. Notably, starting from an initial phase-separated state with uniform flow velocity, and subsequently interacting it with an obstacle, we find that the moving high-energy phase exhibits four characteristic dynamical behaviors—rebounding, pinning, passing, and splitting. These behaviors depend on the velocity of the phase and the strength of the obstacle.
期刊介绍:
Science China Physics, Mechanics & Astronomy, an academic journal cosponsored by the Chinese Academy of Sciences and the National Natural Science Foundation of China, and published by Science China Press, is committed to publishing high-quality, original results in both basic and applied research.
Science China Physics, Mechanics & Astronomy, is published in both print and electronic forms. It is indexed by Science Citation Index.
Categories of articles:
Reviews summarize representative results and achievements in a particular topic or an area, comment on the current state of research, and advise on the research directions. The author’s own opinion and related discussion is requested.
Research papers report on important original results in all areas of physics, mechanics and astronomy.
Brief reports present short reports in a timely manner of the latest important results.