{"title":"Fixed-point quantum continuous search algorithm with optimal query complexity","authors":"Shan Jin, Yuhan Huang, Shaojun Wu, Guanyu Zhou, Chang-Ling Zou, Luyan Sun, Xiaoting Wang","doi":"10.1007/s11433-024-2629-1","DOIUrl":"10.1007/s11433-024-2629-1","url":null,"abstract":"<div><p>Continuous search problems (CSPs), which involve finding solutions within a continuous domain, frequently arise in fields such as optimization, physics, and engineering. Unlike discrete search problems, CSPs require navigating an uncountably infinite space, presenting unique computational challenges. In this work, we propose a fixed-point quantum search algorithm that leverages continuous variables to address these challenges, achieving a quadratic speedup. Inspired by the discrete search results, we manage to establish a lower bound on the query complexity of arbitrary quantum search for CSPs, demonstrating the optimality of our approach. In addition, we demonstrate how to design the internal structure of the quantum search oracle for specific problems. Furthermore, we develop a general framework to apply this algorithm to a range of problem types, including optimization and eigenvalue problems involving continuous variables.</p></div>","PeriodicalId":774,"journal":{"name":"Science China Physics, Mechanics & Astronomy","volume":"68 6","pages":""},"PeriodicalIF":6.4,"publicationDate":"2025-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143877732","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Exploration of electron and ion thermodynamic models in laser-plasma expansion","authors":"Yuan Hu, Zilin Huang, Yong Cao, Quanhua Sun, Heji Huang, Chengyuan Ding, Zhan Wang","doi":"10.1007/s11433-024-2645-2","DOIUrl":"10.1007/s11433-024-2645-2","url":null,"abstract":"<div><p>The expansion of laser-produced plasma (LPP), an important process to be understood to design the debris mitigation system of an extreme ultraviolet (EUV) light source, is governed by its associated electron and ion thermodynamics, the modeling of which is, however, a subject of debate. By applying the polytropic equation of state (EoS) for both electron and ion, we have derived the hydrodynamic-based self-similar solutions for an expanding plasma slab with finite ion temperature. The effects of electron and ion thermodynamics on plasma expansion and ion acceleration are investigated. We show that the unusual negative-correlation thermodynamic model for electrons in the hydrodynamic description of plasma expansion is an outcome of the interactions between the electrons following a nonequilibrium kappa distribution and the inherent plasma-induced electric field from a kinetic point of view. The comparisons between the self-similar solutions and the recent experiment data reveal that the electron is better characterized by the nonequilibrium kappa-based thermodynamic model with suprathermal population than the common equilibrium Boltzmann one. For thermal-ion expansion, it is found that the polytropic index for ion thermodynamics (<i>γ</i><sub><i>i</i></sub>) is about 2, in contrast to <i>γ</i><sub><i>i</i></sub> = 3 for the adiabatic assumption made in earlier studies.</p></div>","PeriodicalId":774,"journal":{"name":"Science China Physics, Mechanics & Astronomy","volume":"68 9","pages":""},"PeriodicalIF":6.4,"publicationDate":"2025-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143877714","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Changqing Luo, Jiao Li, Chuanjie Zheng, Dongdong Liu, Zhenwei Li, Yangping Luo, Péter Németh, Bo Zhang, Jianping Xiong, Bo Wang, Song Wang, Yu Bai, Qingzheng Li, Pei Wang, Zhanwen Han, Jifeng Liu, Yang Huang, Xuefei Chen, Chao Liu
{"title":"A born ultramassive white dwarf-hot subdwarf super-Chandrasekhar candidate","authors":"Changqing Luo, Jiao Li, Chuanjie Zheng, Dongdong Liu, Zhenwei Li, Yangping Luo, Péter Németh, Bo Zhang, Jianping Xiong, Bo Wang, Song Wang, Yu Bai, Qingzheng Li, Pei Wang, Zhanwen Han, Jifeng Liu, Yang Huang, Xuefei Chen, Chao Liu","doi":"10.1007/s11433-024-2630-x","DOIUrl":"10.1007/s11433-024-2630-x","url":null,"abstract":"<div><p>Although supernovae are well-known endpoints of accreting white dwarfs, alternative theoretical possibilities have been widely discussed, such as the accretion-induced collapse (AIC) event as the endpoint of oxygen-neon (ONe) white dwarfs, either accreting up to or merging to exceed the Chandrasekhar limit (the maximum mass of a stable white dwarf). AIC is an important channel to form neutron stars, especially for those unusual systems that are unlikely produced by core-collapse supernovae. However, the observational evidence for this theoretically predicted event and its progenitor is very limited. In all of the known progenitor systems, white dwarfs increase in mass through accretion. Here, we report the discovery of an intriguing binary system Lan 11, composed of a stripped core-helium-burning hot subdwarf and an unseen compact object with a mass of 1.08<i>M</i><sub>⊙</sub> to 1.35<i>M</i><sub>⊙</sub>. Our binary population synthesis calculations suggest that the latter is most likely to be an ONe white dwarf. Furthermore, the non-detection in deep radio observations by the Five-hundred-meter Aperture Spherical Radio Telescope (FAST) does not exclude this interpretation. The total mass of this binary ranges from 1.67<i>M</i><sub>⊙</sub> to 1.92<i>M</i><sub>⊙</sub>, significantly exceeding the Chandrasekhar limit. The reproduction of its evolutionary history indicates that the unique system has undergone two phases of common envelope ejection, implying a born nature of this massive ONe white dwarf rather than an accretion growth from its companion. These results, together with short orbital period of this binary (3.65 h), suggest that this system will merge in 500–540Myr, largely triggering an AIC event, although the possibility of type Ia supernova cannot be entirely ruled out. This finding greatly provides valuable constraints on our understanding of stellar endpoints, whatever leading to an AIC or a supernova.</p></div>","PeriodicalId":774,"journal":{"name":"Science China Physics, Mechanics & Astronomy","volume":"68 6","pages":""},"PeriodicalIF":6.4,"publicationDate":"2025-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143877731","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Grover’s search finds new applications in continuous optimization and spectral analysis","authors":"Xiaoming Sun","doi":"10.1007/s11433-025-2662-3","DOIUrl":"10.1007/s11433-025-2662-3","url":null,"abstract":"","PeriodicalId":774,"journal":{"name":"Science China Physics, Mechanics & Astronomy","volume":"68 6","pages":""},"PeriodicalIF":6.4,"publicationDate":"2025-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143879657","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Understanding vitrification kinetics through fast scanning calorimetry","authors":"Qi Cheng","doi":"10.1007/s11433-024-2574-4","DOIUrl":"10.1007/s11433-024-2574-4","url":null,"abstract":"","PeriodicalId":774,"journal":{"name":"Science China Physics, Mechanics & Astronomy","volume":"68 6","pages":""},"PeriodicalIF":6.4,"publicationDate":"2025-04-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143865491","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Port-controllable routing of orbital angular momentum modes using a rotatable diffractive neural network","authors":"Junmin Liu, Jiafu Chen, Qingji Zeng, Zemin Liang, Xinping Wu, Xin Zhao, Jiangnan Xiao, Huapeng Ye, Ze Dong, Dianyuan Fan, Shuqing Chen","doi":"10.1007/s11433-024-2637-4","DOIUrl":"10.1007/s11433-024-2637-4","url":null,"abstract":"<div><p>Orbital angular momentum (OAM) modes provide an additional orthogonal physical dimension, offering transformative potential for enhancing optical communication capacity. Despite significant progress in mode multiplexing, the development of robust communication networks faces persistent challenges, particularly in effectively routing and controlling these multiplexed channels among network nodes. To tackle these dilemmas, we propose a rotatable diffractive neural network (R-DNN) strategy and demonstrate its capability for port-controllable OAM mode routing. By leveraging the correlation between the orthogonal evolution of OAM modes in free space and phase modulations during propagation, the R-DNN precisely shapes the spatial evolution of mode fields through multiple rotatable phase layers, enabling efficient routing to specific output ports. This approach exploits the interaction of secondary wavelets with the relative states of the rotatable layers, allowing on-demand control of mode evolution paths and enhancing routing flexibility. As a proof of concept, we developed a tri-functional router that successfully directs three OAM modes to individually controllable output ports. This router achieves an average intermode crosstalk of less than −16.4 dB across three functional states, one-dimensional, two-dimensional, and cross-connected switching, while supporting the routing of 5.85 Tbit/s quadrature phase-shift keying signals. These results highlight the R-DNN’s effectiveness in achieving precise and controllable OAM mode manipulation, paving the way for advanced applications in mode-multiplexed communication networks and beyond.</p></div>","PeriodicalId":774,"journal":{"name":"Science China Physics, Mechanics & Astronomy","volume":"68 6","pages":""},"PeriodicalIF":6.4,"publicationDate":"2025-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143865488","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Isolating and identification of layer dependence of correlated states in MoSe2/WS2 moiré heterojunction","authors":"Yuze Meng, Zenghui Wang","doi":"10.1007/s11433-025-2624-4","DOIUrl":"10.1007/s11433-025-2624-4","url":null,"abstract":"<div><p>The emergence of two-dimensional moiré superlattice has sparked intense research interest thanks to its rich correlated physics. Compared with graphene-based systems, moiré superlattices based on transitional metal dichalcogenides facilitate better access to such physical phenomena, with higher transition temperatures, more robust flat bands, and richer correlated states. However, the layer degree freedom in certain heterojunctions has remained largely unexplored due to various technical challenges. In this work, by excluding the effect of the moiré angle through a designed sample structure, we isolate, identify, and investigate the layer dependence in an MoSe<sub>2</sub>/WS<sub>2</sub> moiré heterojunction, and observe striking contrasts between samples with different numbers of layers. In the monolayer MoSe<sub>2</sub>/monolayer WS<sub>2</sub> moiré heterojunction, we observe an unusual alternation in the spectroscopic features of the correlated states, revealing competition between polaron and exciton dominances. In bilayer MoSe<sub>2</sub>/monolayer WS<sub>2</sub> moiré heterojunction, we observe a clear signature oflayer-modulated moiré excitons, which we further use a probe to reveal the electric field tuning of the correlated states. Our study demonstrates the intriguing opportunities offered by the MoSe<sub>2</sub>/WS<sub>2</sub> moiré heterojunction as an exciting playground for exploring many-body physics and engineering emerging quantum states.</p></div>","PeriodicalId":774,"journal":{"name":"Science China Physics, Mechanics & Astronomy","volume":"68 6","pages":""},"PeriodicalIF":6.4,"publicationDate":"2025-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143865489","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"The treasures in the backyard—A bright binary revealed as potential progenitor of a neutron star","authors":"Stephan Geier","doi":"10.1007/s11433-025-2650-8","DOIUrl":"10.1007/s11433-025-2650-8","url":null,"abstract":"","PeriodicalId":774,"journal":{"name":"Science China Physics, Mechanics & Astronomy","volume":"68 6","pages":""},"PeriodicalIF":6.4,"publicationDate":"2025-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143865461","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}