Changqing Luo, Jiao Li, Chuanjie Zheng, Dongdong Liu, Zhenwei Li, Yangping Luo, Péter Németh, Bo Zhang, Jianping Xiong, Bo Wang, Song Wang, Yu Bai, Qingzheng Li, Pei Wang, Zhanwen Han, Jifeng Liu, Yang Huang, Xuefei Chen, Chao Liu
{"title":"一颗诞生的超大质量白矮星——热亚矮星超级钱德拉塞卡候选者","authors":"Changqing Luo, Jiao Li, Chuanjie Zheng, Dongdong Liu, Zhenwei Li, Yangping Luo, Péter Németh, Bo Zhang, Jianping Xiong, Bo Wang, Song Wang, Yu Bai, Qingzheng Li, Pei Wang, Zhanwen Han, Jifeng Liu, Yang Huang, Xuefei Chen, Chao Liu","doi":"10.1007/s11433-024-2630-x","DOIUrl":null,"url":null,"abstract":"<div><p>Although supernovae are well-known endpoints of accreting white dwarfs, alternative theoretical possibilities have been widely discussed, such as the accretion-induced collapse (AIC) event as the endpoint of oxygen-neon (ONe) white dwarfs, either accreting up to or merging to exceed the Chandrasekhar limit (the maximum mass of a stable white dwarf). AIC is an important channel to form neutron stars, especially for those unusual systems that are unlikely produced by core-collapse supernovae. However, the observational evidence for this theoretically predicted event and its progenitor is very limited. In all of the known progenitor systems, white dwarfs increase in mass through accretion. Here, we report the discovery of an intriguing binary system Lan 11, composed of a stripped core-helium-burning hot subdwarf and an unseen compact object with a mass of 1.08<i>M</i><sub>⊙</sub> to 1.35<i>M</i><sub>⊙</sub>. Our binary population synthesis calculations suggest that the latter is most likely to be an ONe white dwarf. Furthermore, the non-detection in deep radio observations by the Five-hundred-meter Aperture Spherical Radio Telescope (FAST) does not exclude this interpretation. The total mass of this binary ranges from 1.67<i>M</i><sub>⊙</sub> to 1.92<i>M</i><sub>⊙</sub>, significantly exceeding the Chandrasekhar limit. The reproduction of its evolutionary history indicates that the unique system has undergone two phases of common envelope ejection, implying a born nature of this massive ONe white dwarf rather than an accretion growth from its companion. These results, together with short orbital period of this binary (3.65 h), suggest that this system will merge in 500–540Myr, largely triggering an AIC event, although the possibility of type Ia supernova cannot be entirely ruled out. This finding greatly provides valuable constraints on our understanding of stellar endpoints, whatever leading to an AIC or a supernova.</p></div>","PeriodicalId":774,"journal":{"name":"Science China Physics, Mechanics & Astronomy","volume":"68 6","pages":""},"PeriodicalIF":6.4000,"publicationDate":"2025-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A born ultramassive white dwarf-hot subdwarf super-Chandrasekhar candidate\",\"authors\":\"Changqing Luo, Jiao Li, Chuanjie Zheng, Dongdong Liu, Zhenwei Li, Yangping Luo, Péter Németh, Bo Zhang, Jianping Xiong, Bo Wang, Song Wang, Yu Bai, Qingzheng Li, Pei Wang, Zhanwen Han, Jifeng Liu, Yang Huang, Xuefei Chen, Chao Liu\",\"doi\":\"10.1007/s11433-024-2630-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Although supernovae are well-known endpoints of accreting white dwarfs, alternative theoretical possibilities have been widely discussed, such as the accretion-induced collapse (AIC) event as the endpoint of oxygen-neon (ONe) white dwarfs, either accreting up to or merging to exceed the Chandrasekhar limit (the maximum mass of a stable white dwarf). AIC is an important channel to form neutron stars, especially for those unusual systems that are unlikely produced by core-collapse supernovae. However, the observational evidence for this theoretically predicted event and its progenitor is very limited. In all of the known progenitor systems, white dwarfs increase in mass through accretion. Here, we report the discovery of an intriguing binary system Lan 11, composed of a stripped core-helium-burning hot subdwarf and an unseen compact object with a mass of 1.08<i>M</i><sub>⊙</sub> to 1.35<i>M</i><sub>⊙</sub>. Our binary population synthesis calculations suggest that the latter is most likely to be an ONe white dwarf. Furthermore, the non-detection in deep radio observations by the Five-hundred-meter Aperture Spherical Radio Telescope (FAST) does not exclude this interpretation. The total mass of this binary ranges from 1.67<i>M</i><sub>⊙</sub> to 1.92<i>M</i><sub>⊙</sub>, significantly exceeding the Chandrasekhar limit. The reproduction of its evolutionary history indicates that the unique system has undergone two phases of common envelope ejection, implying a born nature of this massive ONe white dwarf rather than an accretion growth from its companion. These results, together with short orbital period of this binary (3.65 h), suggest that this system will merge in 500–540Myr, largely triggering an AIC event, although the possibility of type Ia supernova cannot be entirely ruled out. This finding greatly provides valuable constraints on our understanding of stellar endpoints, whatever leading to an AIC or a supernova.</p></div>\",\"PeriodicalId\":774,\"journal\":{\"name\":\"Science China Physics, Mechanics & Astronomy\",\"volume\":\"68 6\",\"pages\":\"\"},\"PeriodicalIF\":6.4000,\"publicationDate\":\"2025-04-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Science China Physics, Mechanics & Astronomy\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s11433-024-2630-x\",\"RegionNum\":1,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science China Physics, Mechanics & Astronomy","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s11433-024-2630-x","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
A born ultramassive white dwarf-hot subdwarf super-Chandrasekhar candidate
Although supernovae are well-known endpoints of accreting white dwarfs, alternative theoretical possibilities have been widely discussed, such as the accretion-induced collapse (AIC) event as the endpoint of oxygen-neon (ONe) white dwarfs, either accreting up to or merging to exceed the Chandrasekhar limit (the maximum mass of a stable white dwarf). AIC is an important channel to form neutron stars, especially for those unusual systems that are unlikely produced by core-collapse supernovae. However, the observational evidence for this theoretically predicted event and its progenitor is very limited. In all of the known progenitor systems, white dwarfs increase in mass through accretion. Here, we report the discovery of an intriguing binary system Lan 11, composed of a stripped core-helium-burning hot subdwarf and an unseen compact object with a mass of 1.08M⊙ to 1.35M⊙. Our binary population synthesis calculations suggest that the latter is most likely to be an ONe white dwarf. Furthermore, the non-detection in deep radio observations by the Five-hundred-meter Aperture Spherical Radio Telescope (FAST) does not exclude this interpretation. The total mass of this binary ranges from 1.67M⊙ to 1.92M⊙, significantly exceeding the Chandrasekhar limit. The reproduction of its evolutionary history indicates that the unique system has undergone two phases of common envelope ejection, implying a born nature of this massive ONe white dwarf rather than an accretion growth from its companion. These results, together with short orbital period of this binary (3.65 h), suggest that this system will merge in 500–540Myr, largely triggering an AIC event, although the possibility of type Ia supernova cannot be entirely ruled out. This finding greatly provides valuable constraints on our understanding of stellar endpoints, whatever leading to an AIC or a supernova.
期刊介绍:
Science China Physics, Mechanics & Astronomy, an academic journal cosponsored by the Chinese Academy of Sciences and the National Natural Science Foundation of China, and published by Science China Press, is committed to publishing high-quality, original results in both basic and applied research.
Science China Physics, Mechanics & Astronomy, is published in both print and electronic forms. It is indexed by Science Citation Index.
Categories of articles:
Reviews summarize representative results and achievements in a particular topic or an area, comment on the current state of research, and advise on the research directions. The author’s own opinion and related discussion is requested.
Research papers report on important original results in all areas of physics, mechanics and astronomy.
Brief reports present short reports in a timely manner of the latest important results.