Russian Journal of Electrochemistry最新文献

筛选
英文 中文
Performance Analysis of a Proton-Exchange Membrane Fuel Cell Battery: The Effect of Ambient Temperature 质子交换膜燃料电池的性能分析:环境温度的影响
IF 1.2 4区 工程技术
Russian Journal of Electrochemistry Pub Date : 2024-05-08 DOI: 10.1134/s1023193524030066
N. A. Faddeev, I. V. Vasyukov, M. A. Belichenko, A. V. Serik, N. V. Smirnova
{"title":"Performance Analysis of a Proton-Exchange Membrane Fuel Cell Battery: The Effect of Ambient Temperature","authors":"N. A. Faddeev, I. V. Vasyukov, M. A. Belichenko, A. V. Serik, N. V. Smirnova","doi":"10.1134/s1023193524030066","DOIUrl":"https://doi.org/10.1134/s1023193524030066","url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Abstract</h3><p>A model of a membrane electrode assembly is considered as regards the effect of various climatic conditions on the specific power characteristics. The developed model is analyzed in comparison with a proton-exchange membrane fuel cell (PEMFC) stack operating at different ambient temperatures. The deviation (less than 10%) between the model and the experiment in the temperature range from –10 to +10°С is demonstrated. The ambient temperature of 10°C is found to be optimal for the battery operation The specific power is shown to decrease by 0.006–0.008 W/cm<sup>2</sup> every 10°C above zero, which is insignificant and can be compensated using a buffer energy storage device.</p>","PeriodicalId":760,"journal":{"name":"Russian Journal of Electrochemistry","volume":"73 1","pages":""},"PeriodicalIF":1.2,"publicationDate":"2024-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140927201","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Magnetron Technology for Manufacturing of Electrodes for Electrolyzers with Proton-Exchange Membranes 用于制造质子交换膜电解槽电极的磁控管技术
IF 1.2 4区 工程技术
Russian Journal of Electrochemistry Pub Date : 2024-05-08 DOI: 10.1134/s1023193524030091
S. I. Nefedkin, A. V. Ryabukhin, V. E. Eletskikh, R. G. Boldin, V. D. Mikhnevich, M. A. Klimova
{"title":"Magnetron Technology for Manufacturing of Electrodes for Electrolyzers with Proton-Exchange Membranes","authors":"S. I. Nefedkin, A. V. Ryabukhin, V. E. Eletskikh, R. G. Boldin, V. D. Mikhnevich, M. A. Klimova","doi":"10.1134/s1023193524030091","DOIUrl":"https://doi.org/10.1134/s1023193524030091","url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Abstract</h3><p>The results of the development and study of catalysts for the anodes of water splitting electrolyzers with a proton exchange membrane are presented. To deposit catalytic layers on a titanium support, the method of magnetron sputtering of composite targets in a vacuum was used. Iridium and ruthenium are used as the principal catalysts; molybdenum, chromium, and titanium, as functional additives. The electrochemical and structural characteristics of catalytic coatings are studied. Using voltammetry methods, cyclic voltammograms and anodic characteristics of the catalytic compositions are obtained, in particular, at different temperatures of the subsequent heat treatment in air, as well as at different measurement temperatures. The Tafel slopes of the current–voltage characteristics of the composite anodes, as well as the currents at a potential of 1.55 V (RHE) are determined. The minimal slopes are obtained for the Ir–Ru–Mo–Ti catalytic composition (<i>b</i> = 40–63 mV/decade); the maximal currents, for the Ir–Mo–Cr catalytic composition (<i>i</i> = 100–110 mA/cm<sup>2</sup> at <i>E</i> = 1.55 V (RHE)). The magnitude of adsorption currents in the anodic potential region of cyclic voltammograms is shown to correlate with the coefficient <i>b</i> of the Tafel equation (<i>E</i> vs. log<i>i</i>); it determines the number of catalytic centers for the deprotonation stage in the oxygen evolution reaction. However, the catalyst activity in the oxygen evolution reaction is determined not only by the number of these centers but mainly by the functional features of the catalyst proper, i.e., the composition of the catalyst and the conditions for its preparation (including the temperature of the catalyst subsequent heat treatment in air). The iridium-based catalytic compositions added with molybdenum and chromium have higher activity in the oxygen evolution reaction. Structural studies showed that during the magnetron sputtering of the composite targets, even with small catalyst loading, dispersed structures are formed; in the real porous titanium anodes, these structures must form on the front surfaces with higher catalyst content.</p>","PeriodicalId":760,"journal":{"name":"Russian Journal of Electrochemistry","volume":"38 1","pages":""},"PeriodicalIF":1.2,"publicationDate":"2024-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140927207","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The Fabrication of Inkjet-3D-Printed NiO–Ce0.8Gd0.2O2-Based Anode for a Solid-Oxide Fuel Cell and Study of Its Microstructure 固态氧化物燃料电池喷墨-三维打印 NiO-Ce0.8Gd0.2O2 阳极的制作及其微观结构研究
IF 1.2 4区 工程技术
Russian Journal of Electrochemistry Pub Date : 2024-05-08 DOI: 10.1134/s1023193524030030
A. D. Asmedianova, A. S. Bagishev, O. A. Logutenko, A. I. Titkov
{"title":"The Fabrication of Inkjet-3D-Printed NiO–Ce0.8Gd0.2O2-Based Anode for a Solid-Oxide Fuel Cell and Study of Its Microstructure","authors":"A. D. Asmedianova, A. S. Bagishev, O. A. Logutenko, A. I. Titkov","doi":"10.1134/s1023193524030030","DOIUrl":"https://doi.org/10.1134/s1023193524030030","url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Abstract</h3><p>A paste composition for inkjet 3D-printing based on the NiO–Ce<sub>0.8</sub>Gd<sub>0.2</sub>O<sub>2</sub>-composite is suggested and an anode billet for a solid-oxide fuel cell of planar geometry is developed using the direct inkjet 3D-printing. Effect of the printing mode and thermal annealing on the morphology and structure of the samples is studied. The anode billet is reduced and the resulting sample is characterized by a number of physicochemical methods.</p>","PeriodicalId":760,"journal":{"name":"Russian Journal of Electrochemistry","volume":"32 1","pages":""},"PeriodicalIF":1.2,"publicationDate":"2024-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140927199","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Diffusion Coatings Nickel–Cobalt for Protecting the Current Collectors of Crofer 22 APU Steel Used in Solid Oxide Electrolyzer Cells 用于保护固体氧化物电解槽中使用的 Crofer 22 APU 钢集流体的镍钴扩散涂层
IF 1.2 4区 工程技术
Russian Journal of Electrochemistry Pub Date : 2024-05-08 DOI: 10.1134/s1023193524030108
O. V. Pikalov, N. V. Demeneva, I. I. Zverkova, S. I. Bredikhin
{"title":"Diffusion Coatings Nickel–Cobalt for Protecting the Current Collectors of Crofer 22 APU Steel Used in Solid Oxide Electrolyzer Cells","authors":"O. V. Pikalov, N. V. Demeneva, I. I. Zverkova, S. I. Bredikhin","doi":"10.1134/s1023193524030108","DOIUrl":"https://doi.org/10.1134/s1023193524030108","url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Abstract</h3><p>The evolution of the microstructure and the composition of Ni–Co coatings used for protecting the current collectors of stainless steel Crofer 22 APU from oxidation is studied in the operation mode of the anode chamber of a solid-oxide electrolyzer cell (SOEC). It is shown that the interdiffusion of steel and coating components and the redox reactions that proceed under the coating in the SOEC operation mode block the chromium diffusion to the current collector surface. The exploitation of the anodic chamber in the air atmosphere changes the Ni–Cr metal composition of the protective coating to a mixture of highly conductive oxides (Fe,Ni,Co)<sub>3</sub>O<sub>4</sub> and (Ni,Co)O, thus changing the form of the time dependence of the surface resistivity of the junction current collector/anode. At the same time, the 7000 h tests revealed sufficiently low values, viz., ~17 mΩ cm<sup>2</sup>, which means that these coatings can be used for the anti-oxidation protection of the stainless-steel current collectors in SOECs.</p>","PeriodicalId":760,"journal":{"name":"Russian Journal of Electrochemistry","volume":"31 1","pages":""},"PeriodicalIF":1.2,"publicationDate":"2024-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140942260","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Electrochemical Properties of Superionic Conductors CsAg4Br3 – хI2 + х 超离子导体 CsAg4Br3 - хI2 + х 的电化学特性
IF 1.1 4区 工程技术
Russian Journal of Electrochemistry Pub Date : 2024-04-27 DOI: 10.1134/S1023193524020058
A. A. Glukhov, O. G. Reznitskikh, T. V. Yaroslavtseva, N. V. Urusova, A. E. Ukshe, Yu. A. Dobrovolsky, O. V. Bushkova
{"title":"Electrochemical Properties of Superionic Conductors CsAg4Br3 – хI2 + х","authors":"A. A. Glukhov,&nbsp;O. G. Reznitskikh,&nbsp;T. V. Yaroslavtseva,&nbsp;N. V. Urusova,&nbsp;A. E. Ukshe,&nbsp;Yu. A. Dobrovolsky,&nbsp;O. V. Bushkova","doi":"10.1134/S1023193524020058","DOIUrl":"10.1134/S1023193524020058","url":null,"abstract":"<p>Solid solutions CsAg<sub>4</sub>Br<sub>3 –</sub> <sub><i>х</i></sub>I<sub>2 +</sub> <sub><i>х</i></sub> (<i>x</i> = 0.38; 0.50; 0.68) are prepared by solid-state synthesis; the single phase of the products is confirmed using the methods of X-ray diffraction and differential scanning calorimetry. The studies of electrotransport characteristics of CsAg<sub>4</sub>Br<sub>3 –</sub> <sub><i>х</i></sub>I<sub>2 +</sub> <sub><i>х</i></sub> involve measuring the ionic conductivity by the four-probe method in the temperature interval from –50 to +120°C and estimating its electronic component by the Hebb–Wagner method. It is shown that in the studied interval of compositions, the ionic conductivity of CsAg<sub>4</sub>Br<sub>3 –</sub> <sub><i>х</i></sub>I<sub>2 +</sub> <sub><i>х</i></sub> solid solutions is practically independent of <i>x,</i> approaching the conductivity of the well-known superionic conductor RbAg<sub>4</sub>I<sub>5</sub>. The activation energy of conduction is found to be about 10 kJ mol<sup>–1</sup> for all compounds studied. The oxidation potential determined by the method of stepwise polarization for CsAg<sub>4</sub>Br<sub>3 –</sub> <sub><i>х</i></sub>I<sub>2 +</sub> <sub><i>х</i></sub> solid solutions is considerably higher as compared with RbAg<sub>4</sub>I<sub>5</sub>, being in the range of 0.75–0.78 V (vs. Ag<sup>0</sup>/Ag<sup>+</sup>). The high electrochemical characteristics of CsAg<sub>4</sub>Br<sub>3 –</sub> <sub><i>х</i></sub>I<sub>2 +</sub> <sub><i>х</i></sub> (0.38 ≤ <i>x</i> ≤ 0.63) and the absence of polymorphic transitions in the considered interval from –160°С to the melting point (175–178°С) make these materials promising for the use in electrochemical devices, especially in low-temperature applications.</p>","PeriodicalId":760,"journal":{"name":"Russian Journal of Electrochemistry","volume":"60 2","pages":"135 - 140"},"PeriodicalIF":1.1,"publicationDate":"2024-04-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140811807","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Synthesis and Physico-Chemical Properties of La0.9Sr0.1Sc1 – xMnxO3 – δ Ceramic Materials with Mixed Electronic and Ionic Conductivity 具有混合电子和离子导电性的 La0.9Sr0.1Sc1 - xMnxO3 - δ 陶瓷材料的合成与物理化学特性
IF 1.1 4区 工程技术
Russian Journal of Electrochemistry Pub Date : 2024-04-27 DOI: 10.1134/S1023193524010038
O. S. Bervitskaya, A. Yu. Stroeva, B. A. Ananchenko, V. A. Ichetovkina, A. V. Kuzmin
{"title":"Synthesis and Physico-Chemical Properties of La0.9Sr0.1Sc1 – xMnxO3 – δ Ceramic Materials with Mixed Electronic and Ionic Conductivity","authors":"O. S. Bervitskaya,&nbsp;A. Yu. Stroeva,&nbsp;B. A. Ananchenko,&nbsp;V. A. Ichetovkina,&nbsp;A. V. Kuzmin","doi":"10.1134/S1023193524010038","DOIUrl":"10.1134/S1023193524010038","url":null,"abstract":"<p>Perovskite-like materials with mixed ionic and electronic conductivity are considered as promising functional materials for proton-ceramic electrochemical devices. In the present work, a solid-solution series La<sub>0.9</sub>Sr<sub>0.1</sub>Sc<sub>1</sub> <sub>–</sub> <sub><i>x</i></sub>Mn<sub><i>x</i></sub>O<sub>3 – δ</sub>, where scandium ions in the B-cation position are gradually replaced by manganese ions, was obtained and studied for the first time. The obtained materials were certified by X-ray phase analysis, scanning electron microscopy, and energy-dispersive microanalysis. The dopant influence on the studied materials’ sintering ability and morphology is elucidated. The electrical conductivity of the solid solutions as a function of temperature and gas phase humidity was investigated by the dc four-probe method.</p>","PeriodicalId":760,"journal":{"name":"Russian Journal of Electrochemistry","volume":"60 1","pages":"1 - 10"},"PeriodicalIF":1.1,"publicationDate":"2024-04-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140811805","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Diagnosis of Blood Gastric Cancer Biomarkers via Nanomaterial-Based Electrochemical Immunosensor: A Review on Recent Advancements (A Review) 基于纳米材料的电化学免疫传感器诊断血液中的胃癌生物标记物:最新进展综述(综述)
IF 1.1 4区 工程技术
Russian Journal of Electrochemistry Pub Date : 2024-04-27 DOI: 10.1134/S1023193524010142
Mojtaba Zehtabi,  Mortaza Raeisi
{"title":"Diagnosis of Blood Gastric Cancer Biomarkers via Nanomaterial-Based Electrochemical Immunosensor: A Review on Recent Advancements (A Review)","authors":"Mojtaba Zehtabi,&nbsp; Mortaza Raeisi","doi":"10.1134/S1023193524010142","DOIUrl":"10.1134/S1023193524010142","url":null,"abstract":"<p>Gastric cancer (GC) is one of the considered enormously important cancer types in the world. A large number of mortality rates have revealed that there is a massive shortage in the prognosis and treatment of GC because the majority of GC cases are identified at an advanced stage. In this regard, the rapid platform for non-invasive detection of GC cells through the analysis of GC biomarkers in the first stages with high sensitivity is essential for the success in the treatment of GC. In recent years, different types of electrochemical immunosensors as efficient sensing devices with benefits including accuracy, reproducibility and low cost have played an extremely significant role in the monitoring of GC. One of the significant issues in the development of electrochemical immunosensors is to increase the system’s sensitivity. A variety of nanomaterials based on carbon-based, silica-based and metallic-based nanomaterials have been used as sensing platforms on the different types of electrochemical electrodes for improving the properties of biodevices. This review highlighted the new progress and technical breakthroughs comprising electrochemical immunosensor for the determination of GC biomarkers including CA19-9, CA72-4, CA125 and CEA. In diverse matrices and proved how nanoprobes could enhance the performance of electrochemical immunsensing approaches.</p>","PeriodicalId":760,"journal":{"name":"Russian Journal of Electrochemistry","volume":"60 1","pages":"73 - 90"},"PeriodicalIF":1.1,"publicationDate":"2024-04-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140811842","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Cotton Stalk-Derived Porous Carbon as Anode Material for Sodium-Ion Batteries 作为钠离子电池阳极材料的棉秆衍生多孔碳
IF 1.1 4区 工程技术
Russian Journal of Electrochemistry Pub Date : 2024-04-27 DOI: 10.1134/S1023193524020101
Yanbin Wei, Yudai Huang, Qingcui Liu, Wenhua Cheng, Dianzeng Jia, Xincun Tang, Lei Wang
{"title":"Cotton Stalk-Derived Porous Carbon as Anode Material for Sodium-Ion Batteries","authors":"Yanbin Wei,&nbsp;Yudai Huang,&nbsp;Qingcui Liu,&nbsp;Wenhua Cheng,&nbsp;Dianzeng Jia,&nbsp;Xincun Tang,&nbsp;Lei Wang","doi":"10.1134/S1023193524020101","DOIUrl":"10.1134/S1023193524020101","url":null,"abstract":"<p>Biomass-derived carbon material has the advantages of economy and high reversible capacity, and become the research hotspot of anode material for sodium-ion batteries (SIBs). Herein, a facile process to prepare carbon material derived from pyrolysis of cotton stalks was reported. As an anode material for SIBs, the sample shows reversible capacity of 76 mA h g<sup>−1</sup> after 500 cycles at 0.05 A g<sup>−1</sup>. In addition, it has specific capacity of 70 mA h g<sup>−1</sup> after 1000 cycles at a current density of 0.1 A g<sup>−1</sup>. This paper provides a new idea to produce carbon material from biomass waste for energy storage and makes a certain contribution to the sustainable development of waste resources.</p>","PeriodicalId":760,"journal":{"name":"Russian Journal of Electrochemistry","volume":"60 2","pages":"141 - 145"},"PeriodicalIF":1.1,"publicationDate":"2024-04-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140811944","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Stability of Microtubular Membranes Based on Ba0.5Sr0.5Co0.8 – xFe0.2MoxO3 – δ Oxides 基于 Ba0.5Sr0.5Co0.8 - xFe0.2MoxO3 - δ 氧化物的微管膜的稳定性
IF 1.1 4区 工程技术
Russian Journal of Electrochemistry Pub Date : 2024-04-27 DOI: 10.1134/S1023193524010099
E. V. Shubnikova, O. A. Bragina, A. P. Nemudry
{"title":"Stability of Microtubular Membranes Based on Ba0.5Sr0.5Co0.8 – xFe0.2MoxO3 – δ Oxides","authors":"E. V. Shubnikova,&nbsp;O. A. Bragina,&nbsp;A. P. Nemudry","doi":"10.1134/S1023193524010099","DOIUrl":"10.1134/S1023193524010099","url":null,"abstract":"<p>The stability of microtubular (MT) membranes based on Ba<sub>0.5</sub>Sr<sub>0.5</sub>Co<sub>0.8 –</sub> <sub><i>x</i></sub>Fe<sub>0.2</sub>Mo<sub><i>x</i></sub>O<sub>3 – δ</sub> oxides (BSCFM<i>x</i>) prepared by the phase inversion technique is studied. It is shown that the MT membranes with the BSCFM<i>x</i> composition exhibit long-term stability and resistance to thermal cycling in the air/helium gradient. The maximum oxygen fluxes were obtained for MT membranes with the composition Ba<sub>0.5</sub>Sr<sub>0.5</sub>Co<sub>0.75</sub>Fe<sub>0.2</sub>Mo<sub>0.05</sub>O<sub>3 – δ</sub> (<span>({{J}_{{{{{text{O}}}_{2}}}}})</span> = 7.6 mL cm<sup>–2</sup> min<sup>–1</sup> at <i>T</i> = 850°С and <i>p</i>O<sub>2.1</sub> = 0.21 atm). A detailed equilibrium phase diagram for the BSCFM5 oxide is obtained. The absence of undesired phase transitions is demonstrated.</p>","PeriodicalId":760,"journal":{"name":"Russian Journal of Electrochemistry","volume":"60 1","pages":"44 - 49"},"PeriodicalIF":1.1,"publicationDate":"2024-04-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140811965","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Production of Ultra-Pure Hydrogen for Fuel Cells Using a Module Based on Nickel Capillaries 利用基于镍毛细管的模块为燃料电池生产超纯氢气
IF 1.1 4区 工程技术
Russian Journal of Electrochemistry Pub Date : 2024-04-27 DOI: 10.1134/S1023193524010129
E. S. Tropin, E. V. Shubnikova, O. A. Bragina, A. P. Nemudry
{"title":"Production of Ultra-Pure Hydrogen for Fuel Cells Using a Module Based on Nickel Capillaries","authors":"E. S. Tropin,&nbsp;E. V. Shubnikova,&nbsp;O. A. Bragina,&nbsp;A. P. Nemudry","doi":"10.1134/S1023193524010129","DOIUrl":"10.1134/S1023193524010129","url":null,"abstract":"<p>In this work, an experimental module for hydrogen purification based on nickel capillaries was fabricated. The module was tested by varying the temperature and the difference in the partial pressure of hydrogen on the supply and permeate sides of the capillaries. The maximum hydrogen flow obtained using a module based on 7 nickel capillaries with a wall thickness of 50 µm was 37.2 mL/min at a temperature of 900°C and a hydrogen pressure of 0.9 atm. The stability of the hydrogen flow to thermal cycling in a temperature range 600–800°С for 55 h was demonstrated.</p>","PeriodicalId":760,"journal":{"name":"Russian Journal of Electrochemistry","volume":"60 1","pages":"30 - 35"},"PeriodicalIF":1.1,"publicationDate":"2024-04-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140812119","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信