A. D. Asmedianova, A. S. Bagishev, O. A. Logutenko, A. I. Titkov
{"title":"固态氧化物燃料电池喷墨-三维打印 NiO-Ce0.8Gd0.2O2 阳极的制作及其微观结构研究","authors":"A. D. Asmedianova, A. S. Bagishev, O. A. Logutenko, A. I. Titkov","doi":"10.1134/s1023193524030030","DOIUrl":null,"url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Abstract</h3><p>A paste composition for inkjet 3D-printing based on the NiO–Ce<sub>0.8</sub>Gd<sub>0.2</sub>O<sub>2</sub>-composite is suggested and an anode billet for a solid-oxide fuel cell of planar geometry is developed using the direct inkjet 3D-printing. Effect of the printing mode and thermal annealing on the morphology and structure of the samples is studied. The anode billet is reduced and the resulting sample is characterized by a number of physicochemical methods.</p>","PeriodicalId":760,"journal":{"name":"Russian Journal of Electrochemistry","volume":"32 1","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2024-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Fabrication of Inkjet-3D-Printed NiO–Ce0.8Gd0.2O2-Based Anode for a Solid-Oxide Fuel Cell and Study of Its Microstructure\",\"authors\":\"A. D. Asmedianova, A. S. Bagishev, O. A. Logutenko, A. I. Titkov\",\"doi\":\"10.1134/s1023193524030030\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<h3 data-test=\\\"abstract-sub-heading\\\">Abstract</h3><p>A paste composition for inkjet 3D-printing based on the NiO–Ce<sub>0.8</sub>Gd<sub>0.2</sub>O<sub>2</sub>-composite is suggested and an anode billet for a solid-oxide fuel cell of planar geometry is developed using the direct inkjet 3D-printing. Effect of the printing mode and thermal annealing on the morphology and structure of the samples is studied. The anode billet is reduced and the resulting sample is characterized by a number of physicochemical methods.</p>\",\"PeriodicalId\":760,\"journal\":{\"name\":\"Russian Journal of Electrochemistry\",\"volume\":\"32 1\",\"pages\":\"\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2024-05-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Russian Journal of Electrochemistry\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1134/s1023193524030030\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ELECTROCHEMISTRY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Russian Journal of Electrochemistry","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1134/s1023193524030030","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ELECTROCHEMISTRY","Score":null,"Total":0}
The Fabrication of Inkjet-3D-Printed NiO–Ce0.8Gd0.2O2-Based Anode for a Solid-Oxide Fuel Cell and Study of Its Microstructure
Abstract
A paste composition for inkjet 3D-printing based on the NiO–Ce0.8Gd0.2O2-composite is suggested and an anode billet for a solid-oxide fuel cell of planar geometry is developed using the direct inkjet 3D-printing. Effect of the printing mode and thermal annealing on the morphology and structure of the samples is studied. The anode billet is reduced and the resulting sample is characterized by a number of physicochemical methods.
期刊介绍:
Russian Journal of Electrochemistry is a journal that covers all aspects of research in modern electrochemistry. The journal welcomes submissions in English or Russian regardless of country and nationality of authors.