Life medicinePub Date : 2024-05-23DOI: 10.1093/lifemedi/lnae023
Xiahong You, Longyu Dou, Mingjia Tan, Xiufang Xiong, Yi Sun
{"title":"SHOC2 plays an oncogenic or tumor suppressive role by differentially targeting the MAPK and mTORC1 signals in liver cancer","authors":"Xiahong You, Longyu Dou, Mingjia Tan, Xiufang Xiong, Yi Sun","doi":"10.1093/lifemedi/lnae023","DOIUrl":"https://doi.org/10.1093/lifemedi/lnae023","url":null,"abstract":"\u0000 SHOC2 is a scaffold protein that activates the RAS-MAPK signal. Our recent study showed that SHOC2 is also a negative regulator of the mTORC1 signal in lung cancer cells. Whether and how SHOC2 differentially regulates the RAS-MAPK vs. the mTORC1 signals in liver cancer remains unknown. Here we showed that SHOC2 is overexpressed in human liver cancer tissues, and SHOC2 overexpression promotes growth and survival of liver cancer cells via activation of the RAS-MAPK signal, although the mTORC1 signal is inactivated. SHOC2 knockdown suppresses the growth of liver cancer cells mainly through inactivating the RAS-MAPK signal. Thus, in the cell culture models, SHOC2 regulation of growth is dependent of the RAS-MAPK, but not the mTORC1 signal. Interestingly, in a mouse liver cancer model induced by diethylnitrosamine (DEN)-high fat diet (HFD), hepatocyte-specific Shoc2 deletion inactivates the Ras-Mapk signal, but has no effect in liver tumorigenesis. However, in the Pten loss-induced liver cancer model, Shoc2 deletion further activates mTorc1 without affecting the Ras-Mapk signal, and promotes liver tumorigenesis. Collectively, it appears that SHOC2 could act as either an oncogene (via activating the MAPK signal) or a tumor suppressor (via inactivating the mTORC1 signal) in the manner dependent of the dominancy of the MAPK vs. mTORC1 signals.","PeriodicalId":74073,"journal":{"name":"Life medicine","volume":"52 23","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141103059","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Life medicinePub Date : 2024-05-02DOI: 10.1093/lifemedi/lnae019
Lingli Zhang, Zhikun Wang, Yuan Zhang, Rui Ji, Zhiben Li, Jun Zou, Bo Gao
{"title":"Regulatory cellular and molecular networks in the bone microenvironment during aging","authors":"Lingli Zhang, Zhikun Wang, Yuan Zhang, Rui Ji, Zhiben Li, Jun Zou, Bo Gao","doi":"10.1093/lifemedi/lnae019","DOIUrl":"https://doi.org/10.1093/lifemedi/lnae019","url":null,"abstract":"\u0000 Age-induced abnormalities in bone metabolism disrupt the equilibrium between bone resorption and formation. This largely stems from disturbances in bone homeostasis, in which signaling pathways exert a significant regulatory influence. Aging compromises the functionality of the bone marrow mesenchymal stem cells (BMSCs), ultimately resulting in tissue dysfunction and pathological aging. Age-related bone degradation primarily manifests as reduced bone formation and the increased accumulation of bone marrow fat. Cellular senescence diminishes bone cell vitality, thereby disrupting the balance of bone remodeling. Intensive osteoclast differentiation leads to the generation of more osteoclasts and increased bone resorption. This review provides insight into the impact of aging on bone, encompassing bone cell states during the aging process and bone signaling pathway transformations. It primarily delves into aging-related signaling pathways, such as the bone morphogenetic protein/Smad, Wnt/β-catenin, osteoprotegerin/receptor activator of NF-κB ligand/receptor activator of NF-κB, connexin43/miR21, and nuclear factor erythroid 2-related factor 2/antioxidant response element pathways, seeking to enhance our comprehension of crucial bone cells and their secretory phenotypes during aging. Furthermore, the precise molecular regulatory mechanisms underlying the interactions between bone signaling pathways and aging are investigated.","PeriodicalId":74073,"journal":{"name":"Life medicine","volume":"78 6","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-05-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141022093","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Follicular fluid-derived exosomes rejuvenate ovarian aging through miR-320a-3p-mediated FOXQ1 inhibition","authors":"Yu Liu, Hongbei Mu, Yu Chen, Kexin Li, Q. Mei, Lingjuan Wang, Tianyu Tang, Qiuzi Shen, Huaibiao Li, Ling Zhang, Jing Li, W. Xiang","doi":"10.1093/lifemedi/lnae013","DOIUrl":"https://doi.org/10.1093/lifemedi/lnae013","url":null,"abstract":"\u0000 Ovarian aging is mainly characterized by a progressive decline in oocyte quantity and quality, which ultimately leads to female infertility. Various therapies have been established to cope with ovarian aging, among which exosome-based therapy is considered a promising strategy that can benefit ovarian functions via multiple pathways. Here, we isolated and characterized exosomes derived from ovarian follicular fluid and profiled the differential expression patterns of noncoding exosomal RNAs in young and aged women. Treatment with young mouse-derived exosomes efficiently rescued ovarian function in aged mice. The follicular fluid exosomes from young mice and miR-320-3p can also promote the proliferation of ovarian granulosa cells and improve mitochondrial function from old mice in vitro. Exosomes can increase the number of primordial and growing follicles, and improve the developmental ability of oocytes in the old mice in vivo. The mechanism may be involve that exosomes transfer miR-320-3p to granulosa cells, and inhibit the expression of FOXQ1. And hnRNPA2B1 controls miR-320-3p entry into exosomes. This work provides insights into the antiaging potential of follicular fluid-derived exosomes and the underlying molecular mechanisms, which may facilitate prevention of ovarian aging and an improvement in female fertility.","PeriodicalId":74073,"journal":{"name":"Life medicine","volume":" 10","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140384410","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Life medicinePub Date : 2024-03-22DOI: 10.1093/lifemedi/lnae014
Yangfei Xiang, In-Hyun Park
{"title":"Brain organoids: from unguided to regionalized to nucleus-specific","authors":"Yangfei Xiang, In-Hyun Park","doi":"10.1093/lifemedi/lnae014","DOIUrl":"https://doi.org/10.1093/lifemedi/lnae014","url":null,"abstract":"","PeriodicalId":74073,"journal":{"name":"Life medicine","volume":" 5","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-03-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140217116","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Life medicinePub Date : 2024-03-07DOI: 10.1093/lifemedi/lnae011
Wanbing Zhao, Yun Fan, Qinyue Zhao, Zhen Fan, Jue Zhao, Wenbo Yu, Wensheng Li, Dan Li, Cong Liu, Jian Wang
{"title":"Tracing TMEM106B fibril deposition in aging and Parkinson’s disease with dementia brains","authors":"Wanbing Zhao, Yun Fan, Qinyue Zhao, Zhen Fan, Jue Zhao, Wenbo Yu, Wensheng Li, Dan Li, Cong Liu, Jian Wang","doi":"10.1093/lifemedi/lnae011","DOIUrl":"https://doi.org/10.1093/lifemedi/lnae011","url":null,"abstract":"\u0000 Transmembrane protein 106B (TMEM106B), previously identified as a risk factor in frontotemporal lobar degeneration, has recently been detected to form fibrillar aggregates in the brains of patients with various neurodegenerative diseases (NDs) and normal elders. While, the specifics of when and where TMEM106B fibrils accumulate in human brains, as well as their connection to aging and disease progression, remain poorly understood. Here, we identified an antibody (NBP1-91311) that directly binds to TMEM106B fibrils extracted from the brain in vitro and to Thioflavin S positive TMEM106B fibrillar aggregates in brain sections. We discovered that TMEM106B fibrils deposit in the human brain in an age-dependent manner. Notably, the TMEM106B fibril load in the brains of Parkinson’s disease with dementia patients was significantly higher than in age-matched elders. Additionally, we found that TMEM106B fibrils predominantly accumulate in astrocytes and neurons and do not co-localize with the pathological deposition formed by other amyloid proteins such as α-synuclein, Aβ, and Tau. Our work provides a comprehensive analysis of the burden and cellular distribution of TMEM106B fibrils in human brains, underscoring the impact of both aging and disease conditions on TMEM106B fibril deposition. This highlights the potential significance of TMEM106B fibrils in various age-related NDs.","PeriodicalId":74073,"journal":{"name":"Life medicine","volume":"29 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140260556","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Life medicinePub Date : 2024-03-07DOI: 10.1093/lifemedi/lnae009
Hao-Kun Xu, Jie-Xi Liu, Ze-Kai Zhou, Chen-Xi Zheng, B. Sui, Yuan Yuan, Liang Kong, Yan Jin, Ji Chen
{"title":"Osteoporosis under psychological stress: mechanisms and therapeutics","authors":"Hao-Kun Xu, Jie-Xi Liu, Ze-Kai Zhou, Chen-Xi Zheng, B. Sui, Yuan Yuan, Liang Kong, Yan Jin, Ji Chen","doi":"10.1093/lifemedi/lnae009","DOIUrl":"https://doi.org/10.1093/lifemedi/lnae009","url":null,"abstract":"\u0000 Psychological stress has been associated with the onset of several diseases, including osteoporosis. However, the underlying pathogenic mechanism remains unknown, and effective therapeutic strategies are still unavailable. Growing evidence suggests that the sympathetic nervous system regulates bone homeostasis and vascular function under psychological stress, as well as the coupling of osteogenesis and angiogenesis in bone development, remodeling, and regeneration. Furthermore, extracellular vesicles (EVs), particularly mesenchymal stem cell extracellular vesicles (MSC–EVs), have emerged as prospecting therapies for stimulating angiogenesis and bone regeneration. We summarize the role of sympathetic regulation in bone homeostasis and vascular function in response to psychological stress and emphasize the relationship between vessels and bone. Finally, we suggest using MSC–EVs as a promising therapeutic method for treating osteoporosis in psychological stress.","PeriodicalId":74073,"journal":{"name":"Life medicine","volume":"50 18","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140258727","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Life medicinePub Date : 2024-03-06DOI: 10.1093/lifemedi/lnae010
Yuge Feng, Cong Su, Guobin Mao, Baoting Sun, Yizhi Cai, Junbiao Dai, Yingxin Ma
{"title":"When synthetic biology meets medicine","authors":"Yuge Feng, Cong Su, Guobin Mao, Baoting Sun, Yizhi Cai, Junbiao Dai, Yingxin Ma","doi":"10.1093/lifemedi/lnae010","DOIUrl":"https://doi.org/10.1093/lifemedi/lnae010","url":null,"abstract":"\u0000 In recent years, the world has faced significant challenges with the COVID-19 pandemic, as well as other infectious diseases such as Zika and Ebola. Furthermore, the rapid rise of non-communicable diseases such as diabetes, heart disease, and cancer has placed tremendous strain on healthcare resources and systems. Unfortunately, advancements in drug development, diagnostics, and therapeutics have struggled to keep pace with the emergence and progression of diseases, necessitating the exploration of new technologies for the discovery and development of biomedicines and biotherapies. Synthetic biology, a revolutionary field in modern science, holds great promise in advancing drug development and disease treatment. This review provides a comprehensive overview of recent developments in the application of synthetic biology to medicine, with a specific focus on its role in drug discovery, drug production, and the diagnosis and treatment of various diseases.","PeriodicalId":74073,"journal":{"name":"Life medicine","volume":"2 2‐3","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140262456","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}