{"title":"利用系统建模揭示衰老细胞的代谢异质性和共性。","authors":"Gong-Hua Li, Yu-Hong Li, Qin Yu, Qing-Qing Zhou, Run-Feng Zhang, Chong-Jun Weng, Ming-Xia Ge, Qing-Peng Kong","doi":"10.1093/lifemedi/lnaf003","DOIUrl":null,"url":null,"abstract":"<p><p>Cellular senescence is a key contributor to aging and aging-related diseases, but its metabolic profiles are not well understood. Here, we performed a systematic analysis of the metabolic features of four types of cellular senescence (replication, irradiation, reactive oxygen species [ROS], and oncogene) in 12 cell lines using genome-wide metabolic modeling and meta-analysis. We discovered that replicative and ROS-induced senescence share a common metabolic signature, marked by decreased lipid metabolism and downregulated mevalonate pathway, while irradiation and oncogene-induced senescence exhibit more heterogeneity and divergence. Our genome-wide knockout simulations showed that enhancing the mevalonate pathway, by administrating mevalonate for instance, could reverse the metabolic alterations associated with senescence and human tissue aging, suggesting a potential anti-aging or lifespan-extending effect. Indeed, the experiment in <i>Caenorhabditis elegans</i> showed that administrating mevalonate significantly increased the lifespan. Our study provides a new insight into the metabolic landscape of cell senescence and identifies potential targets for anti-aging interventions.</p>","PeriodicalId":74073,"journal":{"name":"Life medicine","volume":"4 2","pages":"lnaf003"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11992571/pdf/","citationCount":"0","resultStr":"{\"title\":\"Unraveling the metabolic heterogeneity and commonality in senescent cells using systems modeling.\",\"authors\":\"Gong-Hua Li, Yu-Hong Li, Qin Yu, Qing-Qing Zhou, Run-Feng Zhang, Chong-Jun Weng, Ming-Xia Ge, Qing-Peng Kong\",\"doi\":\"10.1093/lifemedi/lnaf003\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Cellular senescence is a key contributor to aging and aging-related diseases, but its metabolic profiles are not well understood. Here, we performed a systematic analysis of the metabolic features of four types of cellular senescence (replication, irradiation, reactive oxygen species [ROS], and oncogene) in 12 cell lines using genome-wide metabolic modeling and meta-analysis. We discovered that replicative and ROS-induced senescence share a common metabolic signature, marked by decreased lipid metabolism and downregulated mevalonate pathway, while irradiation and oncogene-induced senescence exhibit more heterogeneity and divergence. Our genome-wide knockout simulations showed that enhancing the mevalonate pathway, by administrating mevalonate for instance, could reverse the metabolic alterations associated with senescence and human tissue aging, suggesting a potential anti-aging or lifespan-extending effect. Indeed, the experiment in <i>Caenorhabditis elegans</i> showed that administrating mevalonate significantly increased the lifespan. Our study provides a new insight into the metabolic landscape of cell senescence and identifies potential targets for anti-aging interventions.</p>\",\"PeriodicalId\":74073,\"journal\":{\"name\":\"Life medicine\",\"volume\":\"4 2\",\"pages\":\"lnaf003\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-01-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11992571/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Life medicine\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1093/lifemedi/lnaf003\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/4/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Life medicine","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/lifemedi/lnaf003","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/4/1 0:00:00","PubModel":"eCollection","JCR":"","JCRName":"","Score":null,"Total":0}
Unraveling the metabolic heterogeneity and commonality in senescent cells using systems modeling.
Cellular senescence is a key contributor to aging and aging-related diseases, but its metabolic profiles are not well understood. Here, we performed a systematic analysis of the metabolic features of four types of cellular senescence (replication, irradiation, reactive oxygen species [ROS], and oncogene) in 12 cell lines using genome-wide metabolic modeling and meta-analysis. We discovered that replicative and ROS-induced senescence share a common metabolic signature, marked by decreased lipid metabolism and downregulated mevalonate pathway, while irradiation and oncogene-induced senescence exhibit more heterogeneity and divergence. Our genome-wide knockout simulations showed that enhancing the mevalonate pathway, by administrating mevalonate for instance, could reverse the metabolic alterations associated with senescence and human tissue aging, suggesting a potential anti-aging or lifespan-extending effect. Indeed, the experiment in Caenorhabditis elegans showed that administrating mevalonate significantly increased the lifespan. Our study provides a new insight into the metabolic landscape of cell senescence and identifies potential targets for anti-aging interventions.