Environmental Science: Nano最新文献

筛选
英文 中文
Are Ni-SiC Nanoparticle Electroplated Coatings a Safer Alternative to Hard Chromium? A Comprehensive Aging, Toxicity, and In Silico Studies to Assess Safety by Design Ni-SiC 纳米粒子电镀涂层是更安全的硬铬替代品吗?通过设计评估安全性的综合老化、毒性和硅学研究
IF 8.131 2区 环境科学与生态学
Environmental Science: Nano Pub Date : 2024-11-12 DOI: 10.1039/d4en00751d
Swaroop Chakraborty, Nathan Langford, Yvonne Kohl, Dimitra-Danai Varsou, Sascha Wien, William Stokes, Evangelos Papaioannou, Kata Berkesi, Andrew Britton, Bashiru Ibrahim, Antreas Afantitis, Alexandros Zoikis Karathanasis, Laurence Andrew Nelson, Eugenia Valsami-Jones
{"title":"Are Ni-SiC Nanoparticle Electroplated Coatings a Safer Alternative to Hard Chromium? A Comprehensive Aging, Toxicity, and In Silico Studies to Assess Safety by Design","authors":"Swaroop Chakraborty, Nathan Langford, Yvonne Kohl, Dimitra-Danai Varsou, Sascha Wien, William Stokes, Evangelos Papaioannou, Kata Berkesi, Andrew Britton, Bashiru Ibrahim, Antreas Afantitis, Alexandros Zoikis Karathanasis, Laurence Andrew Nelson, Eugenia Valsami-Jones","doi":"10.1039/d4en00751d","DOIUrl":"https://doi.org/10.1039/d4en00751d","url":null,"abstract":"Considering the increasing interest in utilising nanoparticles (NPs) for advanced, safe, and sustainable coatings, this paper addresses the toxicological concerns associated with Nickel-Silicon Carbide (Ni-SiC) electroplated nanocomposite coatings as an alternative to conventional chromium electrodeposition. We present Ni-SiC nanocomposite coatings as potential substitutes and conduct a comprehensive investigation into the impact of impregnated SiC particles on coating properties. Specifically, we examined the aging of Ni-watt type and Ni Watt-SiC nanocomposite coatings in various environmental and biological media. Our release and transformation data indicate an enhanced release and transformation of Ni in the simulated media (e.g., up to 200 μg/mL in cell culture media) and the formation of NiO and Ni (OH)₂ species as confirmed by XPS analysis. Transmission electron microscopy data reveals the release of SiC NPs in the respective simulated aging medium. The Ni ion release from Ni-watt type and Ni-SiC nanocomposite coating was also investigated in silico to support safe-by-design (SbD) approaches in the development of nanoalloys for electroplating. An invitro cytotoxicity assay, according to ISO shows a significant reduction in cell viability for Ni-SiC nanocomposite coated samples (up to 80% after 72 hours) compared to standalone Ni-Watt type electroplated coatings (up to 20% after 72 hours). Our findings suggest that the co-deposition of Ni with SiC NPs enhances Ni release, which is a major factor in causing toxicity. These results could be pivotal in the adoption of Safe and Sustainable by Design principles within the electroplating industry. This paper contributes to the fields of nanotoxicology and surface coatings, providing a foundation for designing and optimising environmentally friendly, high-performance coatings with broad industrial applications","PeriodicalId":73,"journal":{"name":"Environmental Science: Nano","volume":"72 1","pages":""},"PeriodicalIF":8.131,"publicationDate":"2024-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142599955","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Two-Sided Cellular and Physiological Effects of Zinc Oxide Nanoparticles (nZnO): A Critical Review 纳米氧化锌(nZnO)的细胞和生理双面效应:评论
IF 8.131 2区 环境科学与生态学
Environmental Science: Nano Pub Date : 2024-11-12 DOI: 10.1039/d4en00676c
Anqi Sun, Shuoli Ma, Wen-Xiong Wang
{"title":"Two-Sided Cellular and Physiological Effects of Zinc Oxide Nanoparticles (nZnO): A Critical Review","authors":"Anqi Sun, Shuoli Ma, Wen-Xiong Wang","doi":"10.1039/d4en00676c","DOIUrl":"https://doi.org/10.1039/d4en00676c","url":null,"abstract":"Advances and applications of nanotechnology inevitably lead to the release of nanoparticles (NPs) into the environment, particularly zinc oxide nanoparticles (nZnO). This review focuses on the toxic and nutritional effects of nZnO at both cellular and physiological levels, as well as the corresponding molecular mechanisms involved. Understanding the cellular transport and dissolution characteristics of nZnO is essential to elucidate its potential toxicity mechanisms. Excess nZnO is absorbed into tissues and accumulates in cells, ultimately resulting in physiological inhibition, nutritional imbalances, and oxidative stress. Conversely, an appropriate amount of nZnO may enhance homeostasis at the organ level, induce moderate production of reactive oxygen species (ROS), and activate changes in antioxidant genes and KEGG pathways, thereby improving the anti-stress capacity of organisms. We also examine the fate of nZnO in marine fishes at the physiological and molecular levels. The effects of nZnO exposure are complex, exhibiting both potential mitigation and toxicity. While excessive use of nZnO poses ecological risks, a judiciously designed application of nZnO holds promise for various fields, including marine fish farming. The regulatory role of nZnO in fish organs, such as viscera and liver, provides new insights into the mechanisms underlying its benefits at the individual level, informing strategies to minimize risks while maximizing benefits.","PeriodicalId":73,"journal":{"name":"Environmental Science: Nano","volume":"9 1","pages":""},"PeriodicalIF":8.131,"publicationDate":"2024-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142599956","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Influence of nickel loading on reactivity of Ni/Fe bimetallic nanoparticles toward trichloroethene and carbon tetrachloride 镍负载对镍(Ni)/铁(Fe)双金属纳米颗粒对三氯乙烯和四氯化碳反应活性的影响
IF 8.131 2区 环境科学与生态学
Environmental Science: Nano Pub Date : 2024-11-12 DOI: 10.1039/d4en00426d
Caijie WEI, Weizhong Wu, xufei zhao, Cheng Sun, Zehan Shi, jun Yang, Ming-Hong Wu
{"title":"Influence of nickel loading on reactivity of Ni/Fe bimetallic nanoparticles toward trichloroethene and carbon tetrachloride","authors":"Caijie WEI, Weizhong Wu, xufei zhao, Cheng Sun, Zehan Shi, jun Yang, Ming-Hong Wu","doi":"10.1039/d4en00426d","DOIUrl":"https://doi.org/10.1039/d4en00426d","url":null,"abstract":"Bimetallic Ni/Fe-nanoparticles has been developed to enhance the dechlorination reactivity of nano-sized zero-valent iron. The physical structures of Ni/Fe-NPs with Ni loading ranged from 0.5wt% to 20wt% and the structure dependent reactivity variation towards to trichloroethene (TCE) and carbon tetrachloride (CT) have been fully investigated. A Ni-accumulated surface can be observed for the Ni/Fe-NPs with high Ni loading (20 wt.%), and the structure of other Ni/Fe NPs were identified as a Ni/Fe alloy-like structure with 5wt% Ni/Fe NPs owning the highest surface area and Fe0 content. While the best CT dechlorination rate was 2.5-fold of B-nZVI at 5wt% Ni loading, the best TCE reduction was 12-fold of B-nZVI at medium Ni loading (3wt%-5wt%). Since the primary TCE degradation mechanism is via atomic hydrogen (H*) whereas degradation of CT proceeds via direct electron transfer, the more efficient reduction mechanism for the Ni/Fe NP system was preferably H* reduction. The reduction-rate and the by-products yield variation between medium loading((3wt%-5wt%) and low/high (0.5wt%,20wt%) loading was more significant for TCE than CT. It has been found that Medium Ni loading (3wt%- 5wt%) obviously boosted the β-elimination of TCE to VC due to good storage of H* in Ni catalyst. The production of H* and enhanced electron migration rate were well demonstrated by CV curve and Tafel curve, respectively. The occurrence location of direct electron transfer and H* catalyst in bimetallic Ni/Fe system was further discussed.","PeriodicalId":73,"journal":{"name":"Environmental Science: Nano","volume":"24 1","pages":""},"PeriodicalIF":8.131,"publicationDate":"2024-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142599952","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Unveiling intrinsic electrochemical mechanism of supporting electrolyte and interaction mechanism in electrochemical oxidation tetracycline with nano-PbO2 揭示支撑电解质的内在电化学机理以及纳米二氧化铅电化学氧化四环素的相互作用机理
IF 8.131 2区 环境科学与生态学
Environmental Science: Nano Pub Date : 2024-11-12 DOI: 10.1039/d4en00842a
Yaxuan Wang, Peitong Cen, Hongyu Wang, Chenxi Li, Ziyin Xia, Guoqing Wu, Meng Li, Lei Huang, Jia Yan, Shaoqi Zhou, Ce-Hui Mo, Hongguo Zhang
{"title":"Unveiling intrinsic electrochemical mechanism of supporting electrolyte and interaction mechanism in electrochemical oxidation tetracycline with nano-PbO2","authors":"Yaxuan Wang, Peitong Cen, Hongyu Wang, Chenxi Li, Ziyin Xia, Guoqing Wu, Meng Li, Lei Huang, Jia Yan, Shaoqi Zhou, Ce-Hui Mo, Hongguo Zhang","doi":"10.1039/d4en00842a","DOIUrl":"https://doi.org/10.1039/d4en00842a","url":null,"abstract":"Electrochemical oxidation (EO) for the removal of antibiotics is a promising technique because of green and sustainable electrical−to−chemical energy conversion. However, the interaction mechanism between different electrolytes molecule and organic pollution along with the generation pathway of reactive oxygen species remain unclear. Here, the β−PbO2 electrode was successfully prepared and employed as an effective tool for organic pollution removal. The EO process with β−PbO2 electrode and Na2SO4 electrolyte could completely remove tetracycline (TC) and achieve an impressive kinetic rate constant of 0.239 min−1. Quantum chemical calculations confirmed that hydrogen bonding was the primary binding force between TC and Na2SO4. Density functional theory calculations emphasized the key roles of radical and non−radical pathways in TC removal via the key reaction site (O atom in PbO2). Consequently, this study provided a novel insight into the intrinsic electrochemical behavior changes under various electrolyte, paving the way for novel electrochemical process in water treatment applications.","PeriodicalId":73,"journal":{"name":"Environmental Science: Nano","volume":"41 1","pages":""},"PeriodicalIF":8.131,"publicationDate":"2024-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142601234","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Optimal size of Fe3O4 nanoparticles for different crops depends on the unique nanoscale microstructure of plant leaves under rainy conditions 用于不同作物的 Fe3O4 纳米粒子的最佳尺寸取决于雨水条件下植物叶片独特的纳米级微观结构
IF 8.131 2区 环境科学与生态学
Environmental Science: Nano Pub Date : 2024-11-07 DOI: 10.1039/d4en00753k
Lingyun Chen, Wanru Qing, Xiaoxiao Li, Wenhui Chen, Can Hao, Dunyi Liu, Xinping Chen
{"title":"Optimal size of Fe3O4 nanoparticles for different crops depends on the unique nanoscale microstructure of plant leaves under rainy conditions","authors":"Lingyun Chen, Wanru Qing, Xiaoxiao Li, Wenhui Chen, Can Hao, Dunyi Liu, Xinping Chen","doi":"10.1039/d4en00753k","DOIUrl":"https://doi.org/10.1039/d4en00753k","url":null,"abstract":"Metal-based nanoparticles (NPs) have garnered attention as a potential micronutrient nano-fertilizer. Most studies have focused on the effects of individual NP size on environmental risks and the uptake, translocation, and biological progress of NPs in plants. However, there is a lack of research on the effects of NPs of different sizes and their interactions with the nanoscale layers of plant leaves (hereafter, nanosheets), which may affect adhesion ability, anti-leaching properties, release rate, and fertilizer efficiency. In this study, various sizes (10, 20, 50, 100 nm, and 10 μm) of Fe<small><sub>3</sub></small>O<small><sub>4</sub></small>-NPs (Fe<small><sub>3</sub></small>O<small><sub>4</sub></small>-NPs) were applied to peanut (Fe strategy I, dicotyledon) and maize (Fe strategy II, monocotyledon) leaves to quantitatively compare their fertilization efficiency and anti-leaching effects. The optimal size for different crop leaves differed due to the distinct microstructures of the nanosheets on the leaf surface. In peanut, the optimal size was 50 nm, resulting in superior dry weight (1.32 g per plant), leaf iron concentration (483 μg g<small><sup>−1</sup></small> DW), and adhesion amount (0.039 mg per plant). For maize, the optimal size was found to be 100 nm, leading to increased dry weight (1.98 g per plant), leaf iron concentration (258 μg g<small><sup>−1</sup></small> DW), and adhesion amount (0.061 mg per plant). A model was developed to simulate the force and work exerted by Fe<small><sub>3</sub></small>O<small><sub>4</sub></small>-NPs of different sizes on leaf nanosheets, resulting in the optimal size consistent with the experimental findings. These findings will guide the selection of the optimized NP size for different leaves, thereby enhancing the efficiency of nano-fertilizer utilization and facilitating the development of new types of nano-fertilizers.","PeriodicalId":73,"journal":{"name":"Environmental Science: Nano","volume":"17 1","pages":""},"PeriodicalIF":8.131,"publicationDate":"2024-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142594378","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Chemical Reactivity of Weathered Nanoplastics and Their Interactions with Heavy Metals 风化纳米塑料的化学反应性及其与重金属的相互作用
IF 8.131 2区 环境科学与生态学
Environmental Science: Nano Pub Date : 2024-11-07 DOI: 10.1039/d4en00801d
Yingnan Huang, Fei Dang, Yujun Wang
{"title":"Chemical Reactivity of Weathered Nanoplastics and Their Interactions with Heavy Metals","authors":"Yingnan Huang, Fei Dang, Yujun Wang","doi":"10.1039/d4en00801d","DOIUrl":"https://doi.org/10.1039/d4en00801d","url":null,"abstract":"There is growing concern about the threat that nanoplastics (NPs) pose to ecosystems. However, a comprehensive risk assessment of NPs is currently constrained by the paucity of knowledge on the chemical reactivity of NPs, which were previously thought to be chemically inert. This review identifies the chemical reactivity of NPs that have undergone abiotic and biotic weathering, including the formation of free radicals, the increase in the content of oxygen-containing functional groups, and the release of plastic leachates. Their interaction with legacy contaminants, such as heavy metals (HMs), is then examined, highlighting their critical role in the oxidation and reduction of HMs, through free radical-mediated redox processes and electron shuttling by carbonyl groups. This review offers new insights into the risk of NPs, where their interaction with legacy contaminants determines the long-term exposure scenario for ecosystems. The unexpectedly large pool of reactive NPs in nature will not only affect their risks but also impact the biogeochemistry of HMs and other contaminants that could react with free radicals and carbonyl groups.","PeriodicalId":73,"journal":{"name":"Environmental Science: Nano","volume":"44 1","pages":""},"PeriodicalIF":8.131,"publicationDate":"2024-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142589202","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Combating Eukaryotic and Prokaryotic Harmful Algal Blooms with Visible-Light Driven BiOBrxI1-x/MFe2O4/g-C3N4 (M = Co & Ni) Recyclable Photocatalysts 利用可见光驱动的 BiOBrxI1-x/MFe2O4/g-C3N4(M = Co 和 Ni)可回收光催化剂抗击真核和原核有害藻类孳生
IF 8.131 2区 环境科学与生态学
Environmental Science: Nano Pub Date : 2024-11-06 DOI: 10.1039/d4en00955j
Anjitha A, Shijina Kottarathil, Ajayan KV, Sindhu Swaminathan, Irene M.C. Lo, Kishore Sridharan
{"title":"Combating Eukaryotic and Prokaryotic Harmful Algal Blooms with Visible-Light Driven BiOBrxI1-x/MFe2O4/g-C3N4 (M = Co & Ni) Recyclable Photocatalysts","authors":"Anjitha A, Shijina Kottarathil, Ajayan KV, Sindhu Swaminathan, Irene M.C. Lo, Kishore Sridharan","doi":"10.1039/d4en00955j","DOIUrl":"https://doi.org/10.1039/d4en00955j","url":null,"abstract":"Photocatalysis offers a promising avenue for completely mutilate harmful algal blooms (HABs), a significant threat to global freshwater reserves. In this study, a series of BiOBr<small><sub>x</sub></small>I<small><sub>1-x</sub></small> photocatalysts were synthesized and the most optimal catalyst was integrated with pristine g-C<small><sub>3</sub></small>N<small><sub>4</sub></small> and pre-synthesized CoFe<small><sub>2</sub></small>O<small><sub>4</sub></small>/g-C<small><sub>3</sub></small>N<small><sub>4</sub></small> and NiFe<small><sub>2</sub></small>O<small><sub>4</sub></small>/g-C<small><sub>3</sub></small>N<small><sub>4</sub></small> to form binary and ternary composite heterojunction photocatalysts (BiOBr<small><sub>0.95</sub></small>I<small><sub>0.05</sub></small>/g-C<small><sub>3</sub></small>N<small><sub>4</sub></small> - BG, CoFe<small><sub>2</sub></small>O<small><sub>4</sub></small>/BiOBr<small><sub>0.95</sub></small>I<small><sub>0.05</sub></small>/g-C<small><sub>3</sub></small>N<small><sub>4</sub></small> - CBG, and NiFe<small><sub>2</sub></small>O<small><sub>4</sub></small>/BiOBr<small><sub>0.95</sub></small>I<small><sub>0.05</sub></small>/g-C<small><sub>3</sub></small>N<small><sub>4</sub></small> - NBG). Synthesized photocatalysts were thoroughly characterized and their performance was evaluated through the visible light driven photocatalytic degradation of both Microcystis aeruginosa (prokaryotic) and Scenedesmus acuminatus (eukaryotic) algal cells sourced directly from ponds. Exceptional photocatalytic efficiency of CBG evidenced through the variation in chlorophyll-a content, malondialdehyde, and electrolytic leakage confirmed the complete rupture of the algal cells after 3 h of light exposure. This was further reconfirmed through fluorescent microscopy analysis and interestingly, both HABs failed to re-grow even after 10 days. Enhanced performance of CBG was attributed to the boosted generation of charge carriers facilitated by its extended visible light absorption, which in-turn produced reactive oxygen species (<small><sup>•</sup></small>O<small><sub>2</sub></small><small><sup>-</sup></small> and <small><sup>•</sup></small>OH radicals) that caused irreparable oxidative damage to algal cells, while effectively suppressing the exciton pair recombination supported by its double Z-scheme heterojunction. Furthermore, magnetic recyclability feature of CBG facilitated their easy removal from treated water for avoiding secondary pollution. Design of magnetically recyclable photocatalysts for degrading both prokaryotic and eukaryotic HABs demonstrated here is anticipated to inspire the development of efficient photocatalysts and design cost-effective solutions required for treating ponds and lakes infected with HABs.","PeriodicalId":73,"journal":{"name":"Environmental Science: Nano","volume":"18 1","pages":""},"PeriodicalIF":8.131,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142580705","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Delivering metribuzin from biodegradable nanocarriers: Assessing herbicidal effects for soybean plant protection and weed control 利用可生物降解的纳米载体输送嗪草酮:评估用于大豆植物保护和杂草控制的除草效果
IF 8.131 2区 环境科学与生态学
Environmental Science: Nano Pub Date : 2024-11-06 DOI: 10.1039/d4en00784k
Vanessa Takeshita, Felipe F. Oliveira, Alvaro Garcia, Nubia Zuverza-Mena, Carlos Tamez, Brian Cintra Cardoso, Camila Werk de Pinácio, Blaire Steven, Jacquelyn LaReau, Carlos E. Astete, Christina M Sabliov, Leonardo Fernandes Fraceto, Valdemar Luiz Tornisielo, Christian Dimkpa, Jason C. White
{"title":"Delivering metribuzin from biodegradable nanocarriers: Assessing herbicidal effects for soybean plant protection and weed control","authors":"Vanessa Takeshita, Felipe F. Oliveira, Alvaro Garcia, Nubia Zuverza-Mena, Carlos Tamez, Brian Cintra Cardoso, Camila Werk de Pinácio, Blaire Steven, Jacquelyn LaReau, Carlos E. Astete, Christina M Sabliov, Leonardo Fernandes Fraceto, Valdemar Luiz Tornisielo, Christian Dimkpa, Jason C. White","doi":"10.1039/d4en00784k","DOIUrl":"https://doi.org/10.1039/d4en00784k","url":null,"abstract":"Several studies have reported improved weed control and targeted delivery of herbicides by nanocarriers. However, the effects on crops and non-target organisms need to be considered. Here, we investigate the crop and soil health treated with metribuzin in conventional and biodegradable nanoformulations (poly-ε-caprolactone - PCL and lignin-PCL) (both at 480 g a.i. ha-1<small><sup></sup></small>). Weed control of Amaranthus retroflexus by the nanoformulations was also evaluated as a measurement of target delivery. Soybean plants did not show any differences in photosynthetic parameters and a slight oxidative stress with nanoherbicide treatment, with biomass reduction occurred at 60 days after application. The root accumulated metribuzin formulations and translocated to the aerial part for both plant species. The polymeric nanomaterials in the soil mitigated alterations in the bacterial community. Metribuzin formulations, mainly nanoformulations even at low dose (48 g a.i. ha-1<small><sup></sup></small>) caused severe photosynthetic damage in the weed species, with reduction of chlorophyll content (up to 2.35 time) and electron flow (up to 9.22 times), leading to eventual mortality. MTZ nanoformulations presented a greater efficacy (even in 10-fold less dose) for weed control compared to conventional formulation. These findings suggest that MTZ nanoformulations improve weed control and attenuate the negative effects on crop and soil health, offering an important nano-enabled strategy for sustainable weed management.","PeriodicalId":73,"journal":{"name":"Environmental Science: Nano","volume":"97 1","pages":""},"PeriodicalIF":8.131,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142594380","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Correction: FeS colloids – formation and mobilization pathways in natural waters 更正:铁硫胶体--天然水体中的形成和迁移途径
IF 5.8 2区 环境科学与生态学
Environmental Science: Nano Pub Date : 2024-11-05 DOI: 10.1039/D4EN90048K
Vincent Noël, Naresh Kumar, Kristin Boye, Lilia Barragan, Juan S. Lezama-Pacheco, Rosalie Chu, Nikola Tolic, Gordon E. Brown and John R. Bargar
{"title":"Correction: FeS colloids – formation and mobilization pathways in natural waters","authors":"Vincent Noël, Naresh Kumar, Kristin Boye, Lilia Barragan, Juan S. Lezama-Pacheco, Rosalie Chu, Nikola Tolic, Gordon E. Brown and John R. Bargar","doi":"10.1039/D4EN90048K","DOIUrl":"10.1039/D4EN90048K","url":null,"abstract":"<p >Correction for ‘FeS colloids – formation and mobilization pathways in natural waters’ by Vincent Noël <em>et al.</em>, <em>Environ. Sci.: Nano</em>, 2020, <strong>7</strong>, 2102–2116, https://doi.org/10.1039/C9EN01427F.</p>","PeriodicalId":73,"journal":{"name":"Environmental Science: Nano","volume":" 12","pages":" 4862-4863"},"PeriodicalIF":5.8,"publicationDate":"2024-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2024/en/d4en90048k?page=search","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142580409","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Morphological impact of 1-dimensional → 3-dimensional manganese dioxides on ozone catalytic decomposition correlated with crystal facet and lattice oxygen mobility 一维→三维二氧化锰的形态对臭氧催化分解的影响与晶面和晶格氧迁移率有关
IF 8.131 2区 环境科学与生态学
Environmental Science: Nano Pub Date : 2024-11-05 DOI: 10.1039/d4en00857j
Haotian Wu, Runduo Zhang, Bin Kang, Xiaonan Guo, Zhaoying Di, Kun Wang, Jingbo Jia, Ying Wei, Zhou-Jun Wang
{"title":"Morphological impact of 1-dimensional → 3-dimensional manganese dioxides on ozone catalytic decomposition correlated with crystal facet and lattice oxygen mobility","authors":"Haotian Wu, Runduo Zhang, Bin Kang, Xiaonan Guo, Zhaoying Di, Kun Wang, Jingbo Jia, Ying Wei, Zhou-Jun Wang","doi":"10.1039/d4en00857j","DOIUrl":"https://doi.org/10.1039/d4en00857j","url":null,"abstract":"Ozone is a pollutant that has received widespread attention in recent years, and manganese dioxide (MnO<small><sub>2</sub></small>) has been widely used for ozone catalytic decomposition. However, few studies have described the structural-activity correlation of different types morphological of MnO<small><sub>2</sub></small>. In this study, series of MnO<small><sub>2</sub></small> crystals (α-, β-, γ-, δ-, ε-and λ-MnO<small><sub>2</sub></small>) were synthesized, and their catalytic activities on ozone decomposition (25 <small><sup>o</sup></small>C, dry air) were comparatively studied, which exhibited an order of ε-MnO<small><sub>2</sub></small> &gt; α-MnO<small><sub>2</sub></small> &gt; γ-MnO<small><sub>2</sub></small> &gt; β-MnO<small><sub>2</sub></small> ≈ δ-MnO<small><sub>2</sub></small> &gt; λ-MnO<small><sub>2</sub></small>. XRD and HRTEM confirmed their diversities on the exposed crystal planes. It was confirmed that ε-MnO<small><sub>2</sub></small> with (1 0 2) plane has the largest number of oxygen vacancies and the best oxygen mobility. These findings elucidate the favorable performance of ε-MnO<small><sub>2</sub></small> in the aforementioned tests. DFT calculations reveal the reaction mechanism, showed that ε-MnO<small><sub>2</sub></small> has the lowest energy barrier for the decisive speed step O<small><sub>2</sub></small><small><sup>2-</sup></small> desorption (2.04 eV). This work illustrated the crucial role of the oxygen vacancies and the mobility of lattice oxygen, which sheds light on the strategies of rational design and control synthesis of effective catalysts for ozone elimination.","PeriodicalId":73,"journal":{"name":"Environmental Science: Nano","volume":"138 1","pages":""},"PeriodicalIF":8.131,"publicationDate":"2024-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142580410","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信