{"title":"Effects of Ti3C2Tx (MXene) on growth, oxidative stress, and metabolism of Microcystis aeruginosa","authors":"Qianqian Xiang, Zhihao Ju, Renhong Zhu, Minmin Niu, Yuanyuan Lin, Xuexiu Chang","doi":"10.1039/d4en01074d","DOIUrl":null,"url":null,"abstract":"The potential ecotoxicity of Ti<small><sub>3</sub></small>C<small><sub>2</sub></small>T<small><sub><em>x</em></sub></small> (MXene) is becoming a growing concern due to its widespread use in the field of environmental remediation. Unfortunately, little is known about the toxic effects and mechanisms of Ti<small><sub>3</sub></small>C<small><sub>2</sub></small>T<small><sub><em>x</em></sub></small> on aquatic phytoplankton. Herein, we investigated the influence of Ti<small><sub>3</sub></small>C<small><sub>2</sub></small>T<small><sub><em>x</em></sub></small> on the growth, oxidative stress, and metabolism of the phytoplankton <em>Microcystis aeruginosa</em> using conventional toxicological and metabolomics methods. Results showed that Ti<small><sub>3</sub></small>C<small><sub>2</sub></small>T<small><sub><em>x</em></sub></small> had a dose-dependent effect on the physiological ecology of <em>M. aeruginosa</em>. Although low Ti<small><sub>3</sub></small>C<small><sub>2</sub></small>T<small><sub><em>x</em></sub></small> concentrations (≤1 mg L<small><sup>−1</sup></small>) did not significantly change the <em>M. aeruginosa</em> growth, oxidative status, and cell morphology, high concentrations (≥5 mg L<small><sup>−1</sup></small>) substantially reduced its proliferation and photosynthetic capacity. The metabolomics results showed that low (1 mg L<small><sup>−1</sup></small>) and high (5 mg L<small><sup>−1</sup></small>) Ti<small><sub>3</sub></small>C<small><sub>2</sub></small>T<small><sub><em>x</em></sub></small> concentrations induced the expression of 43 and 128 differential metabolites in <em>M. aeruginosa</em>, respectively, which were mainly enriched in the amino acid metabolism and lipid metabolism pathways. These results suggest that Ti<small><sub>3</sub></small>C<small><sub>2</sub></small>T<small><sub><em>x</em></sub></small> resulted in metabolic disorders in <em>M. aeruginosa</em>, such as porphyrin and chlorophyll metabolism and glycerophospholipid metabolism, thereby inhibiting the photosynthetic activity of <em>M. aeruginosa</em> and ultimately leading to a decrease in algal growth. This study provides new insights into the toxicity mechanism of Ti<small><sub>3</sub></small>C<small><sub>2</sub></small>T<small><sub><em>x</em></sub></small> against <em>M. aeruginosa</em>, which helps us understand the potential risks of Ti<small><sub>3</sub></small>C<small><sub>2</sub></small>T<small><sub><em>x</em></sub></small> in the aquatic environment.","PeriodicalId":73,"journal":{"name":"Environmental Science: Nano","volume":"15 1","pages":""},"PeriodicalIF":5.8000,"publicationDate":"2025-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Science: Nano","FirstCategoryId":"6","ListUrlMain":"https://doi.org/10.1039/d4en01074d","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The potential ecotoxicity of Ti3C2Tx (MXene) is becoming a growing concern due to its widespread use in the field of environmental remediation. Unfortunately, little is known about the toxic effects and mechanisms of Ti3C2Tx on aquatic phytoplankton. Herein, we investigated the influence of Ti3C2Tx on the growth, oxidative stress, and metabolism of the phytoplankton Microcystis aeruginosa using conventional toxicological and metabolomics methods. Results showed that Ti3C2Tx had a dose-dependent effect on the physiological ecology of M. aeruginosa. Although low Ti3C2Tx concentrations (≤1 mg L−1) did not significantly change the M. aeruginosa growth, oxidative status, and cell morphology, high concentrations (≥5 mg L−1) substantially reduced its proliferation and photosynthetic capacity. The metabolomics results showed that low (1 mg L−1) and high (5 mg L−1) Ti3C2Tx concentrations induced the expression of 43 and 128 differential metabolites in M. aeruginosa, respectively, which were mainly enriched in the amino acid metabolism and lipid metabolism pathways. These results suggest that Ti3C2Tx resulted in metabolic disorders in M. aeruginosa, such as porphyrin and chlorophyll metabolism and glycerophospholipid metabolism, thereby inhibiting the photosynthetic activity of M. aeruginosa and ultimately leading to a decrease in algal growth. This study provides new insights into the toxicity mechanism of Ti3C2Tx against M. aeruginosa, which helps us understand the potential risks of Ti3C2Tx in the aquatic environment.
期刊介绍:
Environmental Science: Nano serves as a comprehensive and high-impact peer-reviewed source of information on the design and demonstration of engineered nanomaterials for environment-based applications. It also covers the interactions between engineered, natural, and incidental nanomaterials with biological and environmental systems. This scope includes, but is not limited to, the following topic areas:
Novel nanomaterial-based applications for water, air, soil, food, and energy sustainability
Nanomaterial interactions with biological systems and nanotoxicology
Environmental fate, reactivity, and transformations of nanoscale materials
Nanoscale processes in the environment
Sustainable nanotechnology including rational nanomaterial design, life cycle assessment, risk/benefit analysis