{"title":"The Ventral Tegmental Area (VTA), the Nucleus Accumbens (NAc), the Caudate Nucleus (CN) and the Prefrontal Cortex (PFC) role in the Response to Acute and Chronic Methylphenidate","authors":"Nicholas King, N. Dafny","doi":"10.33696/neurol.4.070","DOIUrl":"https://doi.org/10.33696/neurol.4.070","url":null,"abstract":"Methylphenidate (MPD) is psychostimulant, similar to cocaine and amphetamine, that is commonly used to treat attention deficit hyperactivity disorder and is increasingly being abused by healthy subjects for its psychoactive effects such as memory retention cognitive enhancement for young, adult and the elderly and recreation. MPD’s action on the brain reward/motive circuit is still under investigation, however it is known that in animals chronic use of MPD leads to behavioral sensitization, an experimental indicator associated with dependence. To investigate this neural circuit’s role in response to acute and chronic MPD, three different lesions (non-specific, dopaminergic specific, and glutaminergic specific lesions) have been conducted at the nucleus accumbens (NAc), the ventral tegmental area (VTA), the caudate nucleus (CN), and the prefrontal cortex (PFC), to assess the structure, dopaminergic signaling, and glutaminergic signaling roles in response to MPD. The three types of lesions show that each one of the above four brain areas participate differently in the acute and chronic effect of MPD and have helped determine which type of signaling is critical for the acute and/or chronic behavioral adaptions to MPD.","PeriodicalId":73744,"journal":{"name":"Journal of experimental neurology","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-03-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41621171","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
S. Alpdogan, Ke Li, T. Sander, J. Cornelius, S. Muhammad
{"title":"Cisterna Magna Injection Mouse Model of Subarachnoid Hemorrhage (SAH): A Systematic Literature Review of Preclinical SAH Research","authors":"S. Alpdogan, Ke Li, T. Sander, J. Cornelius, S. Muhammad","doi":"10.33696/neurol.4.069","DOIUrl":"https://doi.org/10.33696/neurol.4.069","url":null,"abstract":"Objective: This review article describes the characteristics of published literature using the cisterna magna blood injection mouse model of subarachnoid hemorrhage (SAH) with the aim to define particular standards and identify moderators of mortality rate, SAH grade, and large artery vasospasm.\u0000\u0000Methods: We searched for English-original peer-reviewed studies which reported the induction of SAH in mice via single or multiple blood injections into the cisterna magna. The search included studies published until 13th February 2023 on PubMed, Embase and Web of Science. Furthermore, we investigated the reporting of mortality rate, vasospasms by measuring large arteries, and SAH grade in cisterna magna blood injection mouse model.\u0000\u0000Results: Seven articles out of 136 identified records matched our inclusion criteria and were therefore included in descriptive analysis. Four articles reported the mortality rate which varied between zero and 22 percent. Five articles displayed vasospasms of large cerebral arteries including basilar artery (BA), anterior cerebral artery (ACA), and middle cerebral artery (MCA). Interestingly, the diameters of the observed arteries started to decrease already within the first hour after blood injection and achieved the lowest values at different times, but mainly between six and twelve hours after SAH induction. The artery diameters reached nearly their pre-SAH (control group) diameters approximately after four to seven days after SAH. However, the SAH severity grade was reported in none of these publications. No uniform model characteristics were observed in current literature.\u0000\u0000Conclusion: A systemic overview of the cisterna magna blood injection mouse model of SAH is presented. An important heterogeneity was observed. Hence, standardized model features and study endpoints have to be defined in order to improve reporting frequency and quality to enhance the reproducibility of preclinical SAH research in the future.","PeriodicalId":73744,"journal":{"name":"Journal of experimental neurology","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-03-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43247760","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Current Spinal Cord Injury Animal Models are Too Simplistic for Clinical Translation","authors":"Lara Gliksten, P. Yip","doi":"10.33696/neurol.4.068","DOIUrl":"https://doi.org/10.33696/neurol.4.068","url":null,"abstract":"","PeriodicalId":73744,"journal":{"name":"Journal of experimental neurology","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-03-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43983902","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
P. G. Noakes, W. Phillips, R. Jeffree, F. Steyn, E. Wolvetang, R. Henderson, P. Mccombe, S. Ngo
{"title":"Muscle and Its Neuromuscular Synapse – Players in the Pathogenesis of Motor Neuron Disease","authors":"P. G. Noakes, W. Phillips, R. Jeffree, F. Steyn, E. Wolvetang, R. Henderson, P. Mccombe, S. Ngo","doi":"10.33696/neurol.4.067","DOIUrl":"https://doi.org/10.33696/neurol.4.067","url":null,"abstract":"Pathogenesis","PeriodicalId":73744,"journal":{"name":"Journal of experimental neurology","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48759890","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Yordan P Penev, Alice Beneke, Kevin T Root, Emily Meisel, Sean Kwak, Michael J Diaz, Julia L Root, Mohammad R Hosseini, Brandon Lucke-Wold
{"title":"Therapeutic Effectiveness of Brain Computer Interfaces in Stroke Patients: A Systematic Review.","authors":"Yordan P Penev, Alice Beneke, Kevin T Root, Emily Meisel, Sean Kwak, Michael J Diaz, Julia L Root, Mohammad R Hosseini, Brandon Lucke-Wold","doi":"10.33696/neurol.4.077","DOIUrl":"10.33696/neurol.4.077","url":null,"abstract":"<p><strong>Background: </strong>Brain-computer interfaces (BCIs) are a rapidly advancing field which utilizes brain activity to control external devices for a myriad of functions, including the restoration of motor function. Clinically, BCIs have been especially impactful in patients who suffer from stroke-mediated damage. However, due to the rapid advancement in the field, there is a lack of accepted standards of practice. Therefore, the aim of this systematic review is to summarize the current literature published regarding the efficacy of BCI-based rehabilitation of motor dysfunction in stroke patients.</p><p><strong>Methodology: </strong>This systematic review was performed in accordance with the guidelines set forth by the Preferred Reporting Items for Systematic Reviews and Meta-analysis (PRISMA) 2020 statement. PubMed, Embase, and Cochrane Library were queried for relevant articles and screened for inclusion criteria by two authors. All discrepancies were resolved by discussion among both reviewers and subsequent consensus.</p><p><strong>Results: </strong>11/12 (91.6%) of studies focused on upper extremity outcomes and reported larger initial improvements for participants in the treatment arm (using BCI) as compared to those in the control arm (no BCI). 2/2 studies focused on lower extremity outcomes reported improvements for the treatment arm compared to the control arm.</p><p><strong>Discussion/conclusion: </strong>This systematic review illustrates the utility BCI has for the restoration of upper extremity and lower extremity motor function in stroke patients and supports further investigation of BCI for other clinical indications.</p>","PeriodicalId":73744,"journal":{"name":"Journal of experimental neurology","volume":"4 3","pages":"87-93"},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41156122","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Commentary: Calcitonin Gene Related Peptide and Its Clinical Utility for the Treatment of Traumatic Brain Injury, Subarachnoid Hemorrhage and Associated Migraine","authors":"Y. Mehkri, Maxwell G. Woolridge, B. Lucke-Wold","doi":"10.33696/neurol.3.065","DOIUrl":"https://doi.org/10.33696/neurol.3.065","url":null,"abstract":"Commentary Calcitonin gene related peptide (CGRP) is a potent vasodilator and neurotransmitter that has been extensively studied in the context of migraine pathophysiology. Recently, studies have explored its role in the treatment of traumatic brain injury (TBI) and subarachnoid hemorrhage (SAH). Although a multitude of therapies exist for migraine, there has been little study on the management of migraine following neurologic injury. As the incidence of TBI continues to grow, especially in the United States, it is essential to explore additional therapeutic options such as CGRP inhibition (CGRPi). Given its differential effects in TBI and SAH, an important next step is to see how patients with both TBI and SAH treated with CGRPi respond differently than patients with TBI alone. There is also a need for study in patients with severe TBI who could benefit most from this novel strategy. Calcitonin gene-related peptide (CGRP) is a 37-amino acid neurotransmitter that has been shown to be involved in cranial and facial pathology. Most commonly, CGRP’s role as a potent vasodilator [1,2] has been associated with migraine [3]. It’s use in the treatment of traumatic brain injury [3–5] and subarachnoid hemorrhage (SAH) [6–9] has recently been explored in the literature. While there have been numerous studies on mice and other animal models describing exogenous CGRP’s therapeutic effects, its limited efficacy in humans due to its low half-life [10] has prevented its advancement to human trials. Migraines","PeriodicalId":73744,"journal":{"name":"Journal of experimental neurology","volume":"3 1","pages":"71 - 74"},"PeriodicalIF":0.0,"publicationDate":"2022-12-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44417090","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
M. Meraz-Ríos, E. A. Cabrera-Reyes, Mayte-Lizeth Padilla-Cristerna
{"title":"The Jalisco Mutation: Familiar Alzheimer’s Disease in México","authors":"M. Meraz-Ríos, E. A. Cabrera-Reyes, Mayte-Lizeth Padilla-Cristerna","doi":"10.33696/neurol.3.066","DOIUrl":"https://doi.org/10.33696/neurol.3.066","url":null,"abstract":"","PeriodicalId":73744,"journal":{"name":"Journal of experimental neurology","volume":"1 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-12-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"69670590","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Nonarteritic Anterior Ischemic Optic Neuropathy (NAION) Induced by Selective Agonist of Serotonin 5-HT1 Receptor – A Case Report","authors":"","doi":"10.33696/neurol.3.063","DOIUrl":"https://doi.org/10.33696/neurol.3.063","url":null,"abstract":"","PeriodicalId":73744,"journal":{"name":"Journal of experimental neurology","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47558095","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Discovery of New Candidate Genes for Anorexia Nervosa through Integration of eQTLs with Summary Statistics","authors":"","doi":"10.33696/neurol.3.061","DOIUrl":"https://doi.org/10.33696/neurol.3.061","url":null,"abstract":"","PeriodicalId":73744,"journal":{"name":"Journal of experimental neurology","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49183117","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}