Advances in neurobiology最新文献

筛选
英文 中文
Fractal Neurodynamics. 分形神经动力学。
Advances in neurobiology Pub Date : 2024-01-01 DOI: 10.1007/978-3-031-47606-8_33
Karolina Armonaite, Livio Conti, Franca Tecchio
{"title":"Fractal Neurodynamics.","authors":"Karolina Armonaite, Livio Conti, Franca Tecchio","doi":"10.1007/978-3-031-47606-8_33","DOIUrl":"10.1007/978-3-031-47606-8_33","url":null,"abstract":"<p><p>The neuronal ongoing electrical activity in the brain network, the neurodynamics, reflects the structure and functionality of generating neuronal pools. The activity of neurons due to their excitatory and inhibitory projections is associated with specific brain functions. Here, the purpose was to investigate if the local ongoing electrical activity exhibits its characteristic spectral and fractal features in wakefulness and sleep across and within subjects. Moreover, we aimed to show that measures typical of complex systems catch physiological features missed by linear spectral analyses. For this study, we concentrated on the evaluation of the power spectral density (PSD) and Higuchi fractal dimension (HFD) measures. Relevant clinical impact of the specific features of neurodynamics identification stands primarily in the potential of classifying cortical parcels according to their neurodynamics as well as enhancing the effectiveness of neuromodulation interventions to cure symptoms secondary to neuronal activity unbalances.</p>","PeriodicalId":7360,"journal":{"name":"Advances in neurobiology","volume":"36 ","pages":"659-675"},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140100790","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Fractals in Neuroimaging. 神经成像中的分形
Advances in neurobiology Pub Date : 2024-01-01 DOI: 10.1007/978-3-031-47606-8_22
Salim Lahmiri, Mounir Boukadoum, Antonio Di Ieva
{"title":"Fractals in Neuroimaging.","authors":"Salim Lahmiri, Mounir Boukadoum, Antonio Di Ieva","doi":"10.1007/978-3-031-47606-8_22","DOIUrl":"10.1007/978-3-031-47606-8_22","url":null,"abstract":"<p><p>Several natural phenomena can be described by studying their statistical scaling patterns, hence leading to simple geometrical interpretation. In this regard, fractal geometry is a powerful tool to describe the irregular or fragmented shape of natural features, using spatial or time-domain statistical scaling laws (power-law behavior) to characterize real-world physical systems. This chapter presents some works on the usefulness of fractal features, mainly the fractal dimension and the related Hurst exponent, in the characterization and identification of pathologies and radiological features in neuroimaging, mainly, magnetic resonance imaging.</p>","PeriodicalId":7360,"journal":{"name":"Advances in neurobiology","volume":"36 ","pages":"429-444"},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140100802","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Point of Care Testing (POCT) in Psychopathology Using Fractal Analysis and Hilbert Huang Transform of Electroencephalogram (EEG). 利用脑电图(EEG)的分形分析和希尔伯特黄变换进行精神病理学的护理点检测(POCT)。
Advances in neurobiology Pub Date : 2024-01-01 DOI: 10.1007/978-3-031-47606-8_35
Mohammed Sakib Ihsan Khan, Herbert F Jelinek
{"title":"Point of Care Testing (POCT) in Psychopathology Using Fractal Analysis and Hilbert Huang Transform of Electroencephalogram (EEG).","authors":"Mohammed Sakib Ihsan Khan, Herbert F Jelinek","doi":"10.1007/978-3-031-47606-8_35","DOIUrl":"10.1007/978-3-031-47606-8_35","url":null,"abstract":"<p><p>Research has shown that relying only on self-reports for diagnosing psychiatric disorders does not yield accurate results at all times. The advances of technology as well as artificial intelligence and other machine learning algorithms have allowed the introduction of point of care testing (POCT) including EEG characterization and correlations with possible psychopathology. Nonlinear methods of EEG analysis have significant advantages over linear methods. Empirical mode decomposition (EMD) is a reliable nonlinear method of EEG pre-processing. In this chapter, we compare two existing EEG complexity measures - Higuchi fractal dimension (HFD) and sample entropy (SE), with our newly proposed method using Higuchi fractal dimension from the Hilbert Huang transform (HFD-HHT). We present an example using the three complexity measures on a 2-minute EEG recorded from a healthy 20-year-old male after signal pre-processing. Furthermore, we showed the usefulness of these complexity measures in the classification of major depressive disorder (MDD) with healthy controls. Our study is in line with previous research and has shown an increase in HFD and SE values in the full, alpha and beta frequency bands suggestive of an increase in EEG irregularity. Moreover, the HFD-HHT values decreased in those three bands for majority of electrodes which is suggestive of a decrease in irregularity in the frequency-time domain. We conclude that all three complexity measures can be vital features useful for EEG analysis which could be incorporated in POCT systems.</p>","PeriodicalId":7360,"journal":{"name":"Advances in neurobiology","volume":"36 ","pages":"693-715"},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140100813","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Astrocyte-Neuron Interactions in Alzheimer's Disease. 阿尔茨海默病中星形胶质细胞与神经元的相互作用
Advances in neurobiology Pub Date : 2024-01-01 DOI: 10.1007/978-3-031-64839-7_14
Clara Muñoz-Castro, Alberto Serrano-Pozo
{"title":"Astrocyte-Neuron Interactions in Alzheimer's Disease.","authors":"Clara Muñoz-Castro, Alberto Serrano-Pozo","doi":"10.1007/978-3-031-64839-7_14","DOIUrl":"10.1007/978-3-031-64839-7_14","url":null,"abstract":"<p><p>Besides its two defining misfolded proteinopathies-Aβ plaques and tau neurofibrillary tangles-Alzheimer's disease (AD) is an exemplar of a neurodegenerative disease with prominent reactive astrogliosis, defined as the set of morphological, molecular, and functional changes that astrocytes suffer as the result of a toxic exposure. Reactive astrocytes can be observed in the vicinity of plaques and tangles, and the relationship between astrocytes and these AD neuropathological lesions is bidirectional so that each AD neuropathological hallmark causes specific changes in astrocytes, and astrocytes modulate the severity of each neuropathological feature in a specific manner. Here, we will review both how astrocytes change as a result of their chronic exposure to AD neuropathology and how those astrocytic changes impact each AD neuropathological feature. We will emphasize the repercussions that AD-associated reactive astrogliosis has for the astrocyte-neuron interaction and highlight areas of uncertainty and priorities for future research.</p>","PeriodicalId":7360,"journal":{"name":"Advances in neurobiology","volume":"39 ","pages":"345-382"},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142071745","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Evolution of Astrocyte-Neuron Interactions Across Species. 星形胶质细胞-神经元跨物种相互作用的进化
Advances in neurobiology Pub Date : 2024-01-01 DOI: 10.1007/978-3-031-64839-7_1
Caterina Ciani, Maria Ayub, Carmen Falcone
{"title":"Evolution of Astrocyte-Neuron Interactions Across Species.","authors":"Caterina Ciani, Maria Ayub, Carmen Falcone","doi":"10.1007/978-3-031-64839-7_1","DOIUrl":"10.1007/978-3-031-64839-7_1","url":null,"abstract":"<p><p>Proper functioning of the central nervous system depends on various tightly regulated phenomena, among which astrocyte-neuron interactions are of critical importance. Various studies across the species have highlighted the diverse yet crucial roles of astrocytes in regulating the nervous system development and functions. In simpler organisms like worms or insects, astrocyte-like cells govern basic functions such as structural support to neurons or regulation of extracellular ions. As the species complexity increases, so does the functional and morphological complexity of astrocytes. For example, in fish and amphibians, these cells are involved in synaptic development and ion homeostasis, while in reptiles and birds, astrocytes regulate synaptic transmission and plasticity and are reported to be involved in complex behaviors. Other species like those belonging to mammals and, in particular, primates have a heterogeneous population of astrocytes, exhibiting region-specific functional properties. In primates, these cells are responsible for proper synaptic transmission, neurotransmitter release and metabolism, and higher cognitive functions like learning, memory, or information processing. This chapter highlights the well-established and somewhat conserved roles of astrocytes and astrocyte-neuron interactions across the evolution of both invertebrates and vertebrates.</p>","PeriodicalId":7360,"journal":{"name":"Advances in neurobiology","volume":"39 ","pages":"1-17"},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142071749","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Adult Neurogenesis, Learning and Memory. 成人神经发生、学习和记忆。
Advances in neurobiology Pub Date : 2024-01-01 DOI: 10.1007/978-3-031-55529-9_13
Eva Šimončičová, Keelin Henderson Pekarik, Haley A Vecchiarelli, Clotilde Lauro, Laura Maggi, Marie-Ève Tremblay
{"title":"Adult Neurogenesis, Learning and Memory.","authors":"Eva Šimončičová, Keelin Henderson Pekarik, Haley A Vecchiarelli, Clotilde Lauro, Laura Maggi, Marie-Ève Tremblay","doi":"10.1007/978-3-031-55529-9_13","DOIUrl":"https://doi.org/10.1007/978-3-031-55529-9_13","url":null,"abstract":"<p><p>Neural plasticity can be defined as the ability of neural circuits to be shaped by external and internal factors. It provides the brain with a capacity for functional and morphological remodelling, with many lines of evidence indicating that these changes are vital for learning and memory formation. The basis of this brain plasticity resides in activity- and experience-driven modifications of synaptic strength, including synaptic formation, elimination or weakening, as well as of modulation of neuronal population, which drive the structural reorganization of neural networks. Recent evidence indicates that brain-resident glial cells actively participate in these processes, suggesting that mechanisms underlying plasticity in the brain are multifaceted. Establishing the 'tripartite' synapse, the role of astrocytes in modulating synaptic transmission in response to neuronal activity was recognized first. Further redefinition of the synapse as 'quad-partite' followed to acknowledge the contribution of microglia which were revealed to affect numerous brain functions via dynamic interactions with synapses, acting as 'synaptic sensors' that respond to neuronal activity and neurotransmitter release, as well as crosstalk with astrocytes. Early studies identified microglial ability to dynamically survey their local brain environment and established their integral role in the active interfacing of environmental stimuli (both internal and external), with brain plasticity and remodelling. Following the introduction to neurogenesis, this chapter details the role that microglia play in regulating neurogenesis in adulthood, specifically as it relates to learning and memory, as well as factors involved in modulation of microglia. Further, a microglial perspective is introduced for the context of environmental enrichment impact on neurogenesis, learning and memory across states of stress, ageing, disease and injury.</p>","PeriodicalId":7360,"journal":{"name":"Advances in neurobiology","volume":"37 ","pages":"221-242"},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142103361","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Pediatric Traumatic Brain Injury: Models, Therapeutics, and Outcomes. 小儿创伤性脑损伤:模型、治疗和结果。
Advances in neurobiology Pub Date : 2024-01-01 DOI: 10.1007/978-3-031-69832-3_7
Eleni H Moschonas, Ellen M Annas, Jonathan Zamudio-Flores, Jessica M Jarvis, Naima Lajud, Corina O Bondi, Anthony E Kline
{"title":"Pediatric Traumatic Brain Injury: Models, Therapeutics, and Outcomes.","authors":"Eleni H Moschonas, Ellen M Annas, Jonathan Zamudio-Flores, Jessica M Jarvis, Naima Lajud, Corina O Bondi, Anthony E Kline","doi":"10.1007/978-3-031-69832-3_7","DOIUrl":"https://doi.org/10.1007/978-3-031-69832-3_7","url":null,"abstract":"<p><p>Pediatric traumatic brain injury (TBI) is a significant healthcare issue, but potential treatments are absent despite robust investigation in several clinical trials. Factors attributed to clinical TBI, such as heterogeneity of injury and single-dose pharmacological treatments as well as timing of administration, may be reasons for the negative studies. Preclinical models of TBI can reduce some of the impediments by highlighting differences in injury depending on injury severity and location and by conducting dose response studies, thus providing better therapeutic targets and pharmacological profiles for clinical use. In this chapter, there were sufficient reports to make comparisons between the models in terms of pathophysiology, behavioral dysfunction, and the efficacy of therapeutic interventions. The models used to date include controlled cortical impact (CCI), weight drop, fluid percussion, and abusive head trauma. Several therapeutics were identified after CCI injury but none in the other models, which underscores the need for studies evaluating the therapies reported after CCI injury as well as novel potential approaches.</p>","PeriodicalId":7360,"journal":{"name":"Advances in neurobiology","volume":"42 ","pages":"147-163"},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142455764","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Dementia and Depression Among Older Adults Following Traumatic Brain Injury. 脑外伤后老年人的痴呆症和抑郁症。
Advances in neurobiology Pub Date : 2024-01-01 DOI: 10.1007/978-3-031-69832-3_5
Mira H Ghneim, Meaghan Broderick, Deborah M Stein
{"title":"Dementia and Depression Among Older Adults Following Traumatic Brain Injury.","authors":"Mira H Ghneim, Meaghan Broderick, Deborah M Stein","doi":"10.1007/978-3-031-69832-3_5","DOIUrl":"https://doi.org/10.1007/978-3-031-69832-3_5","url":null,"abstract":"<p><p>Traumatic brain injuries are increasingly common in older adults and represent a substantial source of morbidity and mortality for this population. In addition to the impact from the primary insult, TBI can lead to a variety of chronic neurocognitive conditions including dementia, depression, and sleep disturbances. When caused by TBI, these conditions differ importantly from their non-TBI-related counterparts. Much about how TBI relates to the development of these conditions is unknown, and more research is needed to further elucidate optimal treatment strategies.</p>","PeriodicalId":7360,"journal":{"name":"Advances in neurobiology","volume":"42 ","pages":"99-118"},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142455760","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Engrams of Fear Memory Attenuation. 恐惧记忆衰减的刻痕
Advances in neurobiology Pub Date : 2024-01-01 DOI: 10.1007/978-3-031-62983-9_9
Johannes Gräff
{"title":"Engrams of Fear Memory Attenuation.","authors":"Johannes Gräff","doi":"10.1007/978-3-031-62983-9_9","DOIUrl":"https://doi.org/10.1007/978-3-031-62983-9_9","url":null,"abstract":"<p><p>Fear attenuation is an etiologically relevant process for animal survival, since once acquired information needs to be continuously updated in the face of changing environmental contingencies. Thus, when situations are encountered that were originally perceived as fearful but are no longer so, fear must be attenuated, otherwise, it risks becoming maladaptive. But what happens to the original memory trace of fear during fear attenuation? In this chapter, we review the studies that have started to approach this question from an engram perspective. We find evidence pointing to both the original memory trace of fear being suppressed, as well as it being updated towards safety. These seemingly conflicting results reflect a well-established dichotomy in the field of fear memory attenuation, namely whether fear attenuation is mediated by an inhibitory mechanism that suppresses fear expression, called extinction, or by an updating mechanism that allows the fear memory to reconsolidate in a different form, called reconsolidation-updating. Which of these scenarios takes the upper hand is ultimately influenced by the behavioral paradigms used to induce fear attenuation, but is an important area for further study as the precise cell populations underlying fear attenuation and the molecular mechanisms therein can now be understood at unprecedented resolution.</p>","PeriodicalId":7360,"journal":{"name":"Advances in neurobiology","volume":"38 ","pages":"149-161"},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141615640","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Adult Neurogenesis, Context Encoding, and Pattern Separation: A Pathway for Treating Overgeneralization. 成人神经发生、情境编码和模式分离:治疗过度概括的途径
Advances in neurobiology Pub Date : 2024-01-01 DOI: 10.1007/978-3-031-62983-9_10
Wei-Li Chang, Rene Hen
{"title":"Adult Neurogenesis, Context Encoding, and Pattern Separation: A Pathway for Treating Overgeneralization.","authors":"Wei-Li Chang, Rene Hen","doi":"10.1007/978-3-031-62983-9_10","DOIUrl":"https://doi.org/10.1007/978-3-031-62983-9_10","url":null,"abstract":"<p><p>In mammals, the subgranular zone of the dentate gyrus is one of two brain regions (with the subventricular zone of the olfactory bulb) that continues to generate new neurons throughout adulthood, a phenomenon known as adult hippocampal neurogenesis (AHN) (Eriksson et al., Nat Med 4:1313-1317, 1998; García-Verdugo et al., J Neurobiol 36:234-248, 1998). The integration of these new neurons into the dentate gyrus (DG) has implications for memory encoding, with unique firing and wiring properties of immature neurons that affect how the hippocampal network encodes and stores attributes of memory. In this chapter, we will describe the process of AHN and properties of adult-born cells as they integrate into the hippocampal circuit and mature. Then, we will discuss some methodological considerations before we review evidence for the role of AHN in two major processes supporting memory that are performed by the DG. First, we will discuss encoding of contextual information for episodic memories and how this is facilitated by AHN. Second, will discuss pattern separation, a major role of the DG that reduces interference for the formation of new memories. Finally, we will review clinical and translational considerations, suggesting that stimulation of AHN may help decrease overgeneralization-a common endophenotype of mood, anxiety, trauma-related, and age-related disorders.</p>","PeriodicalId":7360,"journal":{"name":"Advances in neurobiology","volume":"38 ","pages":"163-193"},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141615623","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信