Advances in neurobiology最新文献

筛选
英文 中文
Engrams: From Behavior to Brain-Wide Networks. 刻痕:从行为到全脑网络
Advances in neurobiology Pub Date : 2024-01-01 DOI: 10.1007/978-3-031-62983-9_2
Kaitlyn E Dorst, Steve Ramirez
{"title":"Engrams: From Behavior to Brain-Wide Networks.","authors":"Kaitlyn E Dorst, Steve Ramirez","doi":"10.1007/978-3-031-62983-9_2","DOIUrl":"https://doi.org/10.1007/978-3-031-62983-9_2","url":null,"abstract":"<p><p>Animals utilize a repertoire of behavioral responses during everyday experiences. During a potentially dangerous encounter, defensive actions such as \"fight, flight, or freeze\" are selected for survival. The successful use of behavior is determined by a series of real-time computations combining an animal's internal (i.e., body) and external (i.e., environment) state. Brain-wide neural pathways are engaged throughout this process to detect stimuli, integrate information, and command behavioral output. The hippocampus, in particular, plays a role in the encoding and storing of the episodic information surrounding these encounters as putative \"engram\" or experience-modified cellular ensembles. Recalling a negative experience then reactivates a dedicated engram ensemble and elicits a behavioral response. How hippocampus-based engrams modulate brain-wide states and an animal's internal/external milieu to influence behavior is an exciting area of investigation for contemporary neuroscience. In this chapter, we provide an overview of recent technological advancements that allow researchers to tag, manipulate, and visualize putative engram ensembles, with an overarching goal of casually connecting their brain-wide underpinnings to behavior. We then discuss how hippocampal fear engrams alter behavior in a manner that is contingent on an environment's physical features as well as how they influence brain-wide patterns of cellular activity. Overall, we propose here that studies on memory engrams offer an exciting avenue for contemporary neuroscience to casually link the activity of cells to cognition and behavior while also offering testable theoretical and experimental frameworks for how the brain organizes experience.</p>","PeriodicalId":7360,"journal":{"name":"Advances in neurobiology","volume":"38 ","pages":"13-28"},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141615642","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
If Engrams Are the Answer, What Is the Question? 如果 Engrams 是答案,那么问题是什么?
Advances in neurobiology Pub Date : 2024-01-01 DOI: 10.1007/978-3-031-62983-9_15
Fionn M O'Sullivan, Tomás J Ryan
{"title":"If Engrams Are the Answer, What Is the Question?","authors":"Fionn M O'Sullivan, Tomás J Ryan","doi":"10.1007/978-3-031-62983-9_15","DOIUrl":"10.1007/978-3-031-62983-9_15","url":null,"abstract":"<p><p>Engram labelling and manipulation methodologies are now a staple of contemporary neuroscientific practice, giving the impression that the physical basis of engrams has been discovered. Despite enormous progress, engrams have not been clearly identified, and it is unclear what they should look like. There is an epistemic bias in engram neuroscience toward characterizing biological changes while neglecting the development of theory. However, the tools of engram biology are exciting precisely because they are not just an incremental step forward in understanding the mechanisms of plasticity and learning but because they can be leveraged to inform theory on one of the fundamental mysteries in neuroscience-how and in what format the brain stores information. We do not propose such a theory here, as we first require an appreciation for what is lacking. We outline a selection of issues in four sections from theoretical biology and philosophy that engram biology and systems neuroscience generally should engage with in order to construct useful future theoretical frameworks. Specifically, what is it that engrams are supposed to explain? How do the different building blocks of the brain-wide engram come together? What exactly are these component parts? And what information do they carry, if they carry anything at all? Asking these questions is not purely the privilege of philosophy but a key to informing scientific hypotheses that make the most of the experimental tools at our disposal. The risk for not engaging with these issues is high. Without a theory of what engrams are, what they do, and the wider computational processes they fit into, we may never know when they have been found.</p>","PeriodicalId":7360,"journal":{"name":"Advances in neurobiology","volume":"38 ","pages":"273-302"},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141615644","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Opportunities for System Neuroscience. 系统神经科学的机遇
Advances in neurobiology Pub Date : 2024-01-01 DOI: 10.1007/978-3-031-69188-1_10
Russell W Chan, Bradley Jay Edelman, Shui Ying Tsang, Kai Gao, Albert Cheung-Hoi Yu
{"title":"Opportunities for System Neuroscience.","authors":"Russell W Chan, Bradley Jay Edelman, Shui Ying Tsang, Kai Gao, Albert Cheung-Hoi Yu","doi":"10.1007/978-3-031-69188-1_10","DOIUrl":"https://doi.org/10.1007/978-3-031-69188-1_10","url":null,"abstract":"<p><p>Systems neuroscience explores the intricate organization and dynamic function of neural circuits and networks within the brain. By elucidating how these complex networks integrate to execute mental operations, this field aims to deepen our understanding of the biological basis of cognition, behavior, and consciousness. In this chapter, we outline the promising future of systems neuroscience, highlighting the emerging opportunities afforded by powerful technological innovations and their applications. Cutting-edge tools such as awake functional MRI, ultrahigh field strength neuroimaging, functional ultrasound imaging, and optoacoustic techniques have revolutionized the field, enabling unprecedented observation and analysis of brain activity. The insights gleaned from these advanced methodologies have empowered the development of a suite of exciting applications across diverse domains. These include brain-machine interfaces (BMIs) for neural prosthetics, cognitive enhancement therapies, personalized mental health interventions, and precision medicine approaches. As our comprehension of neural systems continues to grow, it is envisioned that these and related applications will become increasingly refined and impactful in improving human health and well-being.</p>","PeriodicalId":7360,"journal":{"name":"Advances in neurobiology","volume":"41 ","pages":"247-253"},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142714781","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Computational Fractal-Based Analysis of MR Susceptibility-Weighted Imaging (SWI) in Neuro-Oncology and Neurotraumatology. 基于计算分形的神经肿瘤学和神经创伤学磁共振加权成像 (SWI) 分析。
Advances in neurobiology Pub Date : 2024-01-01 DOI: 10.1007/978-3-031-47606-8_23
Antonio Di Ieva
{"title":"Computational Fractal-Based Analysis of MR Susceptibility-Weighted Imaging (SWI) in Neuro-Oncology and Neurotraumatology.","authors":"Antonio Di Ieva","doi":"10.1007/978-3-031-47606-8_23","DOIUrl":"10.1007/978-3-031-47606-8_23","url":null,"abstract":"<p><p>Susceptibility-weighted imaging (SWI) is a magnetic resonance imaging (MRI) technique able to depict the magnetic susceptibility produced by different substances, such as deoxyhemoglobin, calcium, and iron. The main application of SWI in clinical neuroimaging is detecting microbleedings and venous vasculature. Quantitative analyses of SWI have been developed over the last few years, aimed to offer new parameters, which could be used as neuroimaging biomarkers. Each technique has shown pros and cons, but no gold standard exists yet. The fractal dimension (FD) has been investigated as a novel potential objective parameter for monitoring intratumoral space-filling properties of SWI patterns. We showed that SWI patterns found in different tumors or different glioma grades can be represented by a gradient in the fractal dimension, thereby enabling each tumor to be assigned a specific SWI fingerprint. Such results were especially relevant in the differentiation of low-grade versus high-grade gliomas, as well as from high-grade gliomas versus lymphomas.Therefore, FD has been suggested as a potential image biomarker to analyze intrinsic neoplastic architecture in order to improve the differential diagnosis within clinical neuroimaging, determine appropriate therapy, and improve outcome in patients.These promising preliminary findings could be extended into the field of neurotraumatology, by means of the application of computational fractal-based analysis for the qualitative and quantitative imaging of microbleedings in traumatic brain injury patients. In consideration of some evidences showing that SWI signals are correlated with trauma clinical severity, FD might offer some objective prognostic biomarkers.In conclusion, fractal-based morphometrics of SWI could be further investigated to be used in a complementary way with other techniques, in order to form a holistic understanding of the temporal evolution of brain tumors and follow-up response to treatment, with several further applications in other fields, such as neurotraumatology and cerebrovascular neurosurgery as well.</p>","PeriodicalId":7360,"journal":{"name":"Advances in neurobiology","volume":"36 ","pages":"445-468"},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140100778","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
EEG Complexity Analysis of Brain States, Tasks and ASD Risk. 大脑状态、任务和自闭症风险的脑电图复杂性分析。
Advances in neurobiology Pub Date : 2024-01-01 DOI: 10.1007/978-3-031-47606-8_37
Stephen S Wolfson, Ian Kirk, Karen Waldie, Chris King
{"title":"EEG Complexity Analysis of Brain States, Tasks and ASD Risk.","authors":"Stephen S Wolfson, Ian Kirk, Karen Waldie, Chris King","doi":"10.1007/978-3-031-47606-8_37","DOIUrl":"10.1007/978-3-031-47606-8_37","url":null,"abstract":"<p><p>Autism spectrum disorder is an increasingly prevalent and debilitating neurodevelopmental condition and an electroencephalogram (EEG) diagnostic challenge. Despite large amounts of electrophysiological research over many decades, an EEG biomarker for autism spectrum disorder (ASD) has not been found. We hypothesized that reductions in complex dynamical system behaviour in the human central nervous system as part of the macroscale neuronal function during cognitive processes might be detectable in whole EEG for higher-risk ASD adults. In three studies, we compared the medians of correlation dimension, largest Lyapunov exponent, Higuchi's fractal dimension, multiscale entropy, multifractal detrended fluctuation analysis and Kolmogorov complexity during resting, cognitive and social skill tasks in 20 EEG channels of 39 adults over a range of ASD risk. We found heterogeneous complexity distribution with clusters of hierarchical sequences pointing to potential cognitive processing differences, but no clear distinction based on ASD risk. We suggest that there is indication of statistically significant differences between complexity measures of brain states and tasks. Though replication of our studies is needed with a larger sample, we believe that our electrophysiological and analytic approach has potential as a biomarker for earlier ASD diagnosis.</p>","PeriodicalId":7360,"journal":{"name":"Advances in neurobiology","volume":"36 ","pages":"733-759"},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140100779","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Fractal Analysis in MATLAB: A Tutorial for Neuroscientists. MATLAB 中的分形分析:神经科学家教程》(Fractal Analysis in MATLAB: A Tutorial for Neuroscientists)。
Advances in neurobiology Pub Date : 2024-01-01 DOI: 10.1007/978-3-031-47606-8_41
Juan Ruiz de Miras
{"title":"Fractal Analysis in MATLAB: A Tutorial for Neuroscientists.","authors":"Juan Ruiz de Miras","doi":"10.1007/978-3-031-47606-8_41","DOIUrl":"10.1007/978-3-031-47606-8_41","url":null,"abstract":"<p><p>MATLAB is one of the software platforms most widely used for scientific computation. MATLAB includes a large set of functions, packages, and toolboxes that make it simple and fast to obtain complex mathematical and statistical computations for many applications. In this chapter, we review some tools available in MATLAB for performing fractal analyses on typical neuroscientific data in a practical way. We provide detailed examples of how to calculate the fractal dimension of 1D, 2D, and 3D data in MATLAB. Furthermore, we review other software packages for fractal analysis.</p>","PeriodicalId":7360,"journal":{"name":"Advances in neurobiology","volume":"36 ","pages":"815-825"},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140100781","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Fractal Neurodynamics. 分形神经动力学。
Advances in neurobiology Pub Date : 2024-01-01 DOI: 10.1007/978-3-031-47606-8_33
Karolina Armonaite, Livio Conti, Franca Tecchio
{"title":"Fractal Neurodynamics.","authors":"Karolina Armonaite, Livio Conti, Franca Tecchio","doi":"10.1007/978-3-031-47606-8_33","DOIUrl":"10.1007/978-3-031-47606-8_33","url":null,"abstract":"<p><p>The neuronal ongoing electrical activity in the brain network, the neurodynamics, reflects the structure and functionality of generating neuronal pools. The activity of neurons due to their excitatory and inhibitory projections is associated with specific brain functions. Here, the purpose was to investigate if the local ongoing electrical activity exhibits its characteristic spectral and fractal features in wakefulness and sleep across and within subjects. Moreover, we aimed to show that measures typical of complex systems catch physiological features missed by linear spectral analyses. For this study, we concentrated on the evaluation of the power spectral density (PSD) and Higuchi fractal dimension (HFD) measures. Relevant clinical impact of the specific features of neurodynamics identification stands primarily in the potential of classifying cortical parcels according to their neurodynamics as well as enhancing the effectiveness of neuromodulation interventions to cure symptoms secondary to neuronal activity unbalances.</p>","PeriodicalId":7360,"journal":{"name":"Advances in neurobiology","volume":"36 ","pages":"659-675"},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140100790","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Fractals in Neuroimaging. 神经成像中的分形
Advances in neurobiology Pub Date : 2024-01-01 DOI: 10.1007/978-3-031-47606-8_22
Salim Lahmiri, Mounir Boukadoum, Antonio Di Ieva
{"title":"Fractals in Neuroimaging.","authors":"Salim Lahmiri, Mounir Boukadoum, Antonio Di Ieva","doi":"10.1007/978-3-031-47606-8_22","DOIUrl":"10.1007/978-3-031-47606-8_22","url":null,"abstract":"<p><p>Several natural phenomena can be described by studying their statistical scaling patterns, hence leading to simple geometrical interpretation. In this regard, fractal geometry is a powerful tool to describe the irregular or fragmented shape of natural features, using spatial or time-domain statistical scaling laws (power-law behavior) to characterize real-world physical systems. This chapter presents some works on the usefulness of fractal features, mainly the fractal dimension and the related Hurst exponent, in the characterization and identification of pathologies and radiological features in neuroimaging, mainly, magnetic resonance imaging.</p>","PeriodicalId":7360,"journal":{"name":"Advances in neurobiology","volume":"36 ","pages":"429-444"},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140100802","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Point of Care Testing (POCT) in Psychopathology Using Fractal Analysis and Hilbert Huang Transform of Electroencephalogram (EEG). 利用脑电图(EEG)的分形分析和希尔伯特黄变换进行精神病理学的护理点检测(POCT)。
Advances in neurobiology Pub Date : 2024-01-01 DOI: 10.1007/978-3-031-47606-8_35
Mohammed Sakib Ihsan Khan, Herbert F Jelinek
{"title":"Point of Care Testing (POCT) in Psychopathology Using Fractal Analysis and Hilbert Huang Transform of Electroencephalogram (EEG).","authors":"Mohammed Sakib Ihsan Khan, Herbert F Jelinek","doi":"10.1007/978-3-031-47606-8_35","DOIUrl":"10.1007/978-3-031-47606-8_35","url":null,"abstract":"<p><p>Research has shown that relying only on self-reports for diagnosing psychiatric disorders does not yield accurate results at all times. The advances of technology as well as artificial intelligence and other machine learning algorithms have allowed the introduction of point of care testing (POCT) including EEG characterization and correlations with possible psychopathology. Nonlinear methods of EEG analysis have significant advantages over linear methods. Empirical mode decomposition (EMD) is a reliable nonlinear method of EEG pre-processing. In this chapter, we compare two existing EEG complexity measures - Higuchi fractal dimension (HFD) and sample entropy (SE), with our newly proposed method using Higuchi fractal dimension from the Hilbert Huang transform (HFD-HHT). We present an example using the three complexity measures on a 2-minute EEG recorded from a healthy 20-year-old male after signal pre-processing. Furthermore, we showed the usefulness of these complexity measures in the classification of major depressive disorder (MDD) with healthy controls. Our study is in line with previous research and has shown an increase in HFD and SE values in the full, alpha and beta frequency bands suggestive of an increase in EEG irregularity. Moreover, the HFD-HHT values decreased in those three bands for majority of electrodes which is suggestive of a decrease in irregularity in the frequency-time domain. We conclude that all three complexity measures can be vital features useful for EEG analysis which could be incorporated in POCT systems.</p>","PeriodicalId":7360,"journal":{"name":"Advances in neurobiology","volume":"36 ","pages":"693-715"},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140100813","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Astrocyte-Neuron Interactions in Alzheimer's Disease. 阿尔茨海默病中星形胶质细胞与神经元的相互作用
Advances in neurobiology Pub Date : 2024-01-01 DOI: 10.1007/978-3-031-64839-7_14
Clara Muñoz-Castro, Alberto Serrano-Pozo
{"title":"Astrocyte-Neuron Interactions in Alzheimer's Disease.","authors":"Clara Muñoz-Castro, Alberto Serrano-Pozo","doi":"10.1007/978-3-031-64839-7_14","DOIUrl":"10.1007/978-3-031-64839-7_14","url":null,"abstract":"<p><p>Besides its two defining misfolded proteinopathies-Aβ plaques and tau neurofibrillary tangles-Alzheimer's disease (AD) is an exemplar of a neurodegenerative disease with prominent reactive astrogliosis, defined as the set of morphological, molecular, and functional changes that astrocytes suffer as the result of a toxic exposure. Reactive astrocytes can be observed in the vicinity of plaques and tangles, and the relationship between astrocytes and these AD neuropathological lesions is bidirectional so that each AD neuropathological hallmark causes specific changes in astrocytes, and astrocytes modulate the severity of each neuropathological feature in a specific manner. Here, we will review both how astrocytes change as a result of their chronic exposure to AD neuropathology and how those astrocytic changes impact each AD neuropathological feature. We will emphasize the repercussions that AD-associated reactive astrogliosis has for the astrocyte-neuron interaction and highlight areas of uncertainty and priorities for future research.</p>","PeriodicalId":7360,"journal":{"name":"Advances in neurobiology","volume":"39 ","pages":"345-382"},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142071745","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信