Advances in neurobiology最新文献

筛选
英文 中文
Role of Endogenous Opioids in the Pathophysiology of Obesity and Eating Disorders. 内源性阿片类药物在肥胖症和饮食失调病理生理学中的作用。
Advances in neurobiology Pub Date : 2024-01-01 DOI: 10.1007/978-3-031-45493-6_17
Sylvana Stephano Zuniga, Marcela Rodriguez Flores, Adriana Albu
{"title":"Role of Endogenous Opioids in the Pathophysiology of Obesity and Eating Disorders.","authors":"Sylvana Stephano Zuniga, Marcela Rodriguez Flores, Adriana Albu","doi":"10.1007/978-3-031-45493-6_17","DOIUrl":"10.1007/978-3-031-45493-6_17","url":null,"abstract":"<p><p>This second chapter in our trilogy reviews and critically appraises the scientific evidence for the role of endogenous opioid system (EOS) activity in the onset and progression of both obesity and eating disorders. Defining features of normative eating and maladaptive eating behaviors are discussed as a foundation. We review the scientific literature pertaining to the predisposing risk factors and pathophysiology for obesity and eating disorders. Research targeting the association between obesity, disordered eating, and psychiatric comorbidities is reviewed. We conclude by discussing the involvement of endogenous opioids in neurobiological and behavior traits, and the clinical evidence for the role of the EOS in obesity and eating disorders.</p>","PeriodicalId":7360,"journal":{"name":"Advances in neurobiology","volume":"35 ","pages":"329-356"},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141316492","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Pain, Fear, Anxiety, and Stress: Relations to the Endogenous Opioid System. 疼痛、恐惧、焦虑和压力:与内源性阿片系统的关系。
Advances in neurobiology Pub Date : 2024-01-01 DOI: 10.1007/978-3-031-45493-6_9
Nicholas J Felicione, Melissa D Blank, Casey D Wright, Daniel W McNeil
{"title":"Pain, Fear, Anxiety, and Stress: Relations to the Endogenous Opioid System.","authors":"Nicholas J Felicione, Melissa D Blank, Casey D Wright, Daniel W McNeil","doi":"10.1007/978-3-031-45493-6_9","DOIUrl":"10.1007/978-3-031-45493-6_9","url":null,"abstract":"<p><p>Pain, fear, stress, and anxiety are separate yet interrelated phenomena. Each of these concepts has an extensive individual body of research, with some more recent work focusing on points of conceptual overlap. The role of the endogenous opioid system in each of these phenomena is only beginning to be examined and understood. Research examining the ways in which endogenous opioids (e.g., beta-endorphin; βE) may mediate the relations among pain, fear, stress, and anxiety is even more nascent. This chapter explores the extant evidence for endogenous opioid activity as an underpinning mechanism of these related constructs, with an emphasis on research examining βE.</p>","PeriodicalId":7360,"journal":{"name":"Advances in neurobiology","volume":"35 ","pages":"157-182"},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141316490","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Multilayer Analysis of RNA Sequencing Data in Alzheimer's Disease to Unravel Molecular Mysteries. 多层分析阿尔茨海默病的 RNA 测序数据,揭开分子奥秘。
Advances in neurobiology Pub Date : 2024-01-01 DOI: 10.1007/978-3-031-69188-1_9
Dilara Uzuner, Atılay İlgün, Elif Düz, Fatma Betül Bozkurt, Tunahan Çakır
{"title":"Multilayer Analysis of RNA Sequencing Data in Alzheimer's Disease to Unravel Molecular Mysteries.","authors":"Dilara Uzuner, Atılay İlgün, Elif Düz, Fatma Betül Bozkurt, Tunahan Çakır","doi":"10.1007/978-3-031-69188-1_9","DOIUrl":"https://doi.org/10.1007/978-3-031-69188-1_9","url":null,"abstract":"<p><p>Alzheimer's disease (AD) is a complex disease, and numerous cellular events may be involved in etiology. RNAseq-based transcriptome data hold multilayer information content, which could be crucial in unraveling molecular mysteries of AD. It enables quantification of gene expression levels, identification of genomic variants, and elucidation of splicing anomalies such as exon skipping and intron retention. Additional integration of this information into protein-protein interaction networks and genome-scale metabolic models from the literature has potential to decipher functional modules and affected mechanisms for complex scenarios such as AD. In this chapter, we review the application areas of the multilayer content of RNAseq and associated integrative approaches available, with a special focus on AD.</p>","PeriodicalId":7360,"journal":{"name":"Advances in neurobiology","volume":"41 ","pages":"219-246"},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142714778","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Alzheimer's Disease from Modeling to Mechanism Research. 阿尔茨海默病从模型到机制研究。
Advances in neurobiology Pub Date : 2024-01-01 DOI: 10.1007/978-3-031-69188-1_7
Xiaoyan Sun, Weiqi Zhang
{"title":"Alzheimer's Disease from Modeling to Mechanism Research.","authors":"Xiaoyan Sun, Weiqi Zhang","doi":"10.1007/978-3-031-69188-1_7","DOIUrl":"https://doi.org/10.1007/978-3-031-69188-1_7","url":null,"abstract":"<p><p>As our population continues to age, the search for effective therapeutic strategies to combat neurodegenerative diseases, particularly Alzheimer's disease (AD), has become more pressing than ever. For over a decade, researchers have focused on the amyloid cascade hypothesis in their pursuit of new drugs for AD. However, with numerous drugs targeting this hypothesis failing in clinical trials, it is clear that AD's pathogenesis is complex, and each individual may display significant heterogeneity. Consequently, treatment has shifted to focus on multiple targets and early AD detection. Furthermore, there is an urgent need to develop new models that address the shortcomings of current rodent models, which have species differences. The organoid model, a newly developed model, appears to be the future direction, but it must overcome some system immaturity problems.</p>","PeriodicalId":7360,"journal":{"name":"Advances in neurobiology","volume":"41 ","pages":"153-170"},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142714839","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Delineating a Pathway for the Discovery of Functional Connectome Biomarkers of Autism. 为发现自闭症的功能连接组生物标志物划定途径。
Advances in neurobiology Pub Date : 2024-01-01 DOI: 10.1007/978-3-031-69491-2_18
Shinwon Park, Phoebe Thomson, Gregory Kiar, F Xavier Castellanos, Michael P Milham, Boris Bernhardt, Adriana Di Martino
{"title":"Delineating a Pathway for the Discovery of Functional Connectome Biomarkers of Autism.","authors":"Shinwon Park, Phoebe Thomson, Gregory Kiar, F Xavier Castellanos, Michael P Milham, Boris Bernhardt, Adriana Di Martino","doi":"10.1007/978-3-031-69491-2_18","DOIUrl":"https://doi.org/10.1007/978-3-031-69491-2_18","url":null,"abstract":"<p><p>The promise of individually tailored care for autism has driven efforts to establish biomarkers. This chapter appraises the state of precision-medicine research focused on biomarkers based on the functional brain connectome. This work is grounded on abundant evidence supporting the brain dysconnection model of autism and the advantages of resting-state functional MRI (R-fMRI) for studying the brain in vivo. After considering biomarker requirements of consistency and clinical relevance, we provide a scoping review of R-fMRI studies of individual prediction in autism. In the past 10 years, responding to the availability of open data through the Autism Brain Imaging Data Exchange, machine learning studies have surged. Nearly all have focused on diagnostic label classification. These efforts have shown that autism prediction is feasible using functional connectome markers, with accuracy reported well above chance. In parallel, emerging approaches more directly addressing autism heterogeneity are paving the way for much-needed biomarkers of longitudinal outcome and treatment response. We conclude with key challenges to be addressed by the next generation of studies.</p>","PeriodicalId":7360,"journal":{"name":"Advances in neurobiology","volume":"40 ","pages":"511-544"},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142674894","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Mismatch Negativity (MMN) as a Pharmacodynamic/Response Biomarker for NMDA Receptor and Excitatory/Inhibitory Imbalance-Targeted Treatments in Schizophrenia. 错配负性(MMN)作为精神分裂症 NMDA 受体和兴奋/抑制失衡靶向治疗的药效学/反应生物标记物。
Advances in neurobiology Pub Date : 2024-01-01 DOI: 10.1007/978-3-031-69491-2_15
Daniel C Javitt
{"title":"Mismatch Negativity (MMN) as a Pharmacodynamic/Response Biomarker for NMDA Receptor and Excitatory/Inhibitory Imbalance-Targeted Treatments in Schizophrenia.","authors":"Daniel C Javitt","doi":"10.1007/978-3-031-69491-2_15","DOIUrl":"https://doi.org/10.1007/978-3-031-69491-2_15","url":null,"abstract":"<p><p>Schizophrenia is a major mental disorder that affects approximately 0.5% of the population worldwide. Persistent negative symptoms and cognitive impairments associated with schizophrenia (CIAS) are key features of the disorder and primary predictors of long-term disability. At the neurochemical level, both CIAS and negative symptoms are potentially attributable to dysfunction or dysregulation of N-methyl-D-aspartate receptor (NMDAR)-mediated neurotransmission within cortical and subcortical brain regions. At present, there are no approved treatments for either CIAS or persistent negative symptoms. Development of novel treatments, moreover, is limited by the lack of biomarkers that can be used translationally across preclinical and early-stage clinical investigation. The present chapter describes the use of mismatch negativity (MMN) as a pharmacodynamic/response (PD/R) biomarker for early-stage clinical investigation of NMDAR targeted therapies for schizophrenia. MMN indexes dysfunction of early auditory processing (EAP) in schizophrenia. In humans, deficits in MMN generation contribute hierarchically to impaired cognition and functional outcome. Across humans, rodents, and primates, MMN has been linked to impaired NMDAR function and resultant disturbances in excitatory/inhibitory (E/I) balance involving interactions between glutamatergic (excitatory) pyramidal and GABAeric (inhibitory) local circuit neurons. In early-stage clinical trials, MMN has shown sensitivity to the acute effects of novel pharmacological treatments. These findings support use of MMN as a pharmacodynamic/response biomarker to support preclinical drug discovery and early-stage proof-of-mechanisms studies in schizophrenia and other related neuropsychiatric disorders.</p>","PeriodicalId":7360,"journal":{"name":"Advances in neurobiology","volume":"40 ","pages":"411-451"},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142674492","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Altered Sleep Oscillations as Neurophysiological Biomarkers of Schizophrenia. 作为精神分裂症神经生理学生物标志物的睡眠振荡改变
Advances in neurobiology Pub Date : 2024-01-01 DOI: 10.1007/978-3-031-69491-2_13
Ahmad Mayeli, Francesco L Donati, Fabio Ferrarelli
{"title":"Altered Sleep Oscillations as Neurophysiological Biomarkers of Schizophrenia.","authors":"Ahmad Mayeli, Francesco L Donati, Fabio Ferrarelli","doi":"10.1007/978-3-031-69491-2_13","DOIUrl":"https://doi.org/10.1007/978-3-031-69491-2_13","url":null,"abstract":"<p><p>Sleep spindles and slow waves are the two main oscillatory activities occurring during nonrapid eye movement (NREM) sleep. Here, we will first describe the electrophysiological characteristics of these sleep oscillations along with the neurophysiological and molecular mechanisms underlying their generation and synchronization in the healthy brain. We will then review the extant evidence of deficits in sleep spindles and, to a lesser extent, slow waves, including in slow wave-spindle coupling, in patients with Schizophrenia (SCZ) across the course of the disorder, from at-risk to chronic stages. Next, we will discuss how these sleep oscillatory deficits point to defects in neuronal circuits within the thalamocortical network as well as to alterations in molecular neurotransmission implicating the GABAergic and glutamatergic systems in SCZ. Finally, after explaining how spindle and slow waves may represent neurophysiological biomarkers with predictive, diagnostic, and prognostic potential, we will present novel pharmacological and neuromodulatory interventions aimed at restoring sleep oscillatory deficits in SCZ, which in turn may serve as target engagement biomarkers to ameliorate the clinical symptoms and the quality of life of individuals affected by this devastating brain disorder.</p>","PeriodicalId":7360,"journal":{"name":"Advances in neurobiology","volume":"40 ","pages":"351-383"},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142674888","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Auditory Biomarkers of Neuropsychiatric Disorders in Nonhuman Primates. 非人灵长类神经精神疾病的听觉生物标志物
Advances in neurobiology Pub Date : 2024-01-01 DOI: 10.1007/978-3-031-69491-2_9
Monica N O'Connell, Annamaria Barczak
{"title":"Auditory Biomarkers of Neuropsychiatric Disorders in Nonhuman Primates.","authors":"Monica N O'Connell, Annamaria Barczak","doi":"10.1007/978-3-031-69491-2_9","DOIUrl":"https://doi.org/10.1007/978-3-031-69491-2_9","url":null,"abstract":"<p><p>Animal models of neuropsychiatric disorders with appropriate biomarkers can greatly inform the neurobiological basis of disorder-related deficits of cognitive and/or sensory processes. Given the genetic, physiologic, and behavioral similarities between humans and nonhuman primates (NHPs), NHP studies are monumentally important for preclinical translational research. Capitalizing on the NHP's similarities with human systems provides one of the best opportunities to gain detailed insight into the mechanisms underlying disorder-related symptoms and to accumulate a foundation of information for the development of therapeutic interventions. Here, we discuss how results from NHP studies have provided insight into the generation and modulation of select auditory biomarkers of schizophrenia including auditory steady-state responses and mismatch negativity. Since neuro-oscillatory activity has been shown to be relatively preserved across species, we highlight how incorporating the analysis of local and network-level oscillations from multiple nodes across different pathways involved in auditory processing has been used to further the precision of translational comparisons across species.</p>","PeriodicalId":7360,"journal":{"name":"Advances in neurobiology","volume":"40 ","pages":"219-234"},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142674889","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Computational and Translational Fractal-Based Analysis in the Translational Neurosciences: An Overview. 转化神经科学中基于分形的计算和转化分析:概述。
Advances in neurobiology Pub Date : 2024-01-01 DOI: 10.1007/978-3-031-47606-8_39
Antonio Di Ieva
{"title":"Computational and Translational Fractal-Based Analysis in the Translational Neurosciences: An Overview.","authors":"Antonio Di Ieva","doi":"10.1007/978-3-031-47606-8_39","DOIUrl":"10.1007/978-3-031-47606-8_39","url":null,"abstract":"<p><p>After the previous sections on \"Fractals: What and Why?,\" the last section of this book covers the software tools necessary to perform computational fractal-based analysis, with special emphasis on its applications into the neurosciences. The use of ImageJ and MATLAB, as well as other software packages, is reviewed. The current and future applications of fractal modeling in bioengineering and biotechnology are discussed as well. Perspectives on the translation of merging fractals with artificial intelligence-based methods with the final aim of pattern discrimination in neurological diseases by means of a unified fractal model of the brain are also given. Moreover, some new translational applications of fractal analysis to the neurosciences are presented, including eye tracking analysis, cognitive neuroscience, and music.</p>","PeriodicalId":7360,"journal":{"name":"Advances in neurobiology","volume":"36 ","pages":"781-793"},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140100776","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Computational Fractal-Based Analysis of Brain Tumor Microvascular Networks. 基于计算分形的脑肿瘤微血管网络分析
Advances in neurobiology Pub Date : 2024-01-01 DOI: 10.1007/978-3-031-47606-8_27
Antonio Di Ieva, Omar S Al-Kadi
{"title":"Computational Fractal-Based Analysis of Brain Tumor Microvascular Networks.","authors":"Antonio Di Ieva, Omar S Al-Kadi","doi":"10.1007/978-3-031-47606-8_27","DOIUrl":"10.1007/978-3-031-47606-8_27","url":null,"abstract":"<p><p>Brain parenchyma microvasculature is set in disarray in the presence of tumors, and malignant brain tumors are among the most vascularized neoplasms in humans. As microvessels can be easily identified in histologic specimens, quantification of microvascularity can be used alone or in combination with other histological features to increase the understanding of the dynamic behavior, diagnosis, and prognosis of brain tumors. Different brain tumors, and even subtypes of the same tumor, show specific microvascular patterns, as a kind of \"microvascular fingerprint,\" which is particular to each histotype. Reliable morphometric parameters are required for the qualitative and quantitative characterization of the neoplastic angioarchitecture, although the lack of standardization of a technique able to quantify the microvascular patterns in an objective way has limited the \"morphometric approach\" in neuro-oncology.In this chapter, we focus on the importance of computational-based morphometrics, for the objective description of tumoral microvascular fingerprinting. By also introducing the concept of \"angio-space,\" which is the tumoral space occupied by the microvessels, we here present fractal analysis as the most reliable computational tool able to offer objective parameters for the description of the microvascular networks.The spectrum of different angioarchitectural configurations can be quantified by means of Euclidean and fractal-based parameters in a multiparametric analysis, aimed to offer surrogate biomarkers of cancer. Such parameters are here described from the methodological point of view (i.e., feature extraction) as well as from the clinical perspective (i.e., relation to underlying physiology), in order to offer new computational parameters to the clinicians with the final goal of improving diagnostic and prognostic power of patients affected by brain tumors.</p>","PeriodicalId":7360,"journal":{"name":"Advances in neurobiology","volume":"36 ","pages":"525-544"},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140100777","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信