Advances in neurobiology最新文献

筛选
英文 中文
Magnetoencephalography in Psychiatry: A Perspective on Translational Research and Applications. 精神病学中的脑磁图:转化研究与应用透视》。
Advances in neurobiology Pub Date : 2024-01-01 DOI: 10.1007/978-3-031-69491-2_6
Angelantonio Tavella, Peter J Uhlhaas
{"title":"Magnetoencephalography in Psychiatry: A Perspective on Translational Research and Applications.","authors":"Angelantonio Tavella, Peter J Uhlhaas","doi":"10.1007/978-3-031-69491-2_6","DOIUrl":"https://doi.org/10.1007/978-3-031-69491-2_6","url":null,"abstract":"<p><p>Magnetoencephalography (MEG) is a neuroimaging technique that has excellent temporal as well as good spatial resolution for measuring neural activity and has been extensively employed in cognitive neuroscience. However, MEG has only been more recently applied to investigations of brain networks and biomarkers in psychiatry. Besides providing new insights into the pathophysiology of major psychiatry syndromes, especially in schizophrenia, a major objective of current research is the identification of biomarkers that could inform early intervention and novel treatments. This chapter will provide a state-of-the-art overview of MEG as applied to schizophrenia, autism spectrum disorders, and Alzheimer's disease, summarizing methodological approaches and studies investigating alterations during resting-state and task-related paradigms. In addition, we will highlight future methodological developments and their potential for applications of MEG in psychiatry.</p>","PeriodicalId":7360,"journal":{"name":"Advances in neurobiology","volume":"40 ","pages":"143-156"},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142674872","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The Less Things Change, the More They Remain the Same: Impaired Neural Plasticity as a Critical Target for Drug Development in Neuropsychiatry. 变化越少,不变越多:受损的神经可塑性是神经精神病学药物开发的关键目标。
Advances in neurobiology Pub Date : 2024-01-01 DOI: 10.1007/978-3-031-69491-2_26
Joshua T Kantrowitz, Daniel C Javitt
{"title":"The Less Things Change, the More They Remain the Same: Impaired Neural Plasticity as a Critical Target for Drug Development in Neuropsychiatry.","authors":"Joshua T Kantrowitz, Daniel C Javitt","doi":"10.1007/978-3-031-69491-2_26","DOIUrl":"https://doi.org/10.1007/978-3-031-69491-2_26","url":null,"abstract":"<p><p>Neuropsychiatric disability is related to reduced ability to change in response to clinical interventions, e.g., plasticity. Study of biomarkers and interventional strategies for plasticity, however, are sparse. In this chapter, we focus on the serial frequency discrimination task (SFDT), which is sensitive to impairments in early auditory processing (EAP) and auditory learning and has been most thoroughly studied in dyslexia and schizophrenia. In the SFDT, participants are presented with repeated paired tones (\"reference\" and \"test\") and indicate which tone is higher in pitch. Plasticity during the SFDT is critically dependent upon interactions between prefrontal \"cognitive control\" regions, and lower-level perceptual and motor regions that may be detected using both fMRI and time-frequency event-related potential (TF-ERP) approaches. Additionally, interactions between the cortex and striatum give insights into glutamate/dopamine interaction mechanisms. The SFDT task has been utilized in the development of N-methyl-D-aspartate receptor (NMDAR) targeted medications, which significantly modulate sensory and premotor neurophysiological activity. Deficits in pitch processing play a critical role in impaired neuro- and social cognitive function in schizophrenia and may contribute to similar impairments in dyslexia. Thus, the SFDT may be ideal for development of treatments aimed at amelioration of neuro- and social cognitive deficits across neuropsychiatric disorders.</p>","PeriodicalId":7360,"journal":{"name":"Advances in neurobiology","volume":"40 ","pages":"801-828"},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142674748","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Biomarkers of Auditory-Verbal Hallucinations. 听觉-言语幻觉的生物标志物
Advances in neurobiology Pub Date : 2024-01-01 DOI: 10.1007/978-3-031-69491-2_22
Victoria L Fisher, Gabriel X Hosein, Boris Epié, Albert R Powers
{"title":"Biomarkers of Auditory-Verbal Hallucinations.","authors":"Victoria L Fisher, Gabriel X Hosein, Boris Epié, Albert R Powers","doi":"10.1007/978-3-031-69491-2_22","DOIUrl":"https://doi.org/10.1007/978-3-031-69491-2_22","url":null,"abstract":"<p><p>Auditory-verbal hallucinations (AVH) are debilitating symptoms experienced by those diagnosed with psychosis as well as many other neurological and psychiatric disorders. Critical to supporting individuals with AVH is identifying biomarkers that serve to track changes in brain states that put individuals at risk for developing or worsening of symptoms. There has been substantial literature identifying neural areas to track over time that may prove to be effective clinical tools. The efficacy of these tools has been bolstered when considering them under mechanistic accounts of AVH. In this chapter, we explore the literature that connects mechanistic theories and structurally based models of AVH and the potential biomarkers derived from this research.</p>","PeriodicalId":7360,"journal":{"name":"Advances in neurobiology","volume":"40 ","pages":"665-681"},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142674892","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Fractal Dimension Analysis in Neurological Disorders: An Overview. 神经系统疾病中的分形维度分析:概述。
Advances in neurobiology Pub Date : 2024-01-01 DOI: 10.1007/978-3-031-47606-8_16
Leticia Díaz Beltrán, Christopher R Madan, Carsten Finke, Stephan Krohn, Antonio Di Ieva, Francisco J Esteban
{"title":"Fractal Dimension Analysis in Neurological Disorders: An Overview.","authors":"Leticia Díaz Beltrán, Christopher R Madan, Carsten Finke, Stephan Krohn, Antonio Di Ieva, Francisco J Esteban","doi":"10.1007/978-3-031-47606-8_16","DOIUrl":"10.1007/978-3-031-47606-8_16","url":null,"abstract":"<p><p>Fractal analysis has emerged as a powerful tool for characterizing irregular and complex patterns found in the nervous system. This characterization is typically applied by estimating the fractal dimension (FD), a scalar index that describes the topological complexity of the irregular components of the nervous system, both at the macroscopic and microscopic levels, that may be viewed as geometric fractals. Moreover, temporal properties of neurophysiological signals can also be interpreted as dynamic fractals. Given its sensitivity for detecting changes in brain morphology, FD has been explored as a clinically relevant marker of brain damage in several neuropsychiatric conditions as well as in normal and pathological cerebral aging. In this sense, evidence is accumulating for decreases in FD in Alzheimer's disease, frontotemporal dementia, Parkinson's disease, multiple sclerosis, and many other neurological disorders. In addition, it is becoming increasingly clear that fractal analysis in the field of clinical neurology opens the possibility of detecting structural alterations in the early stages of the disease, which highlights FD as a potential diagnostic and prognostic tool in clinical practice.</p>","PeriodicalId":7360,"journal":{"name":"Advances in neurobiology","volume":"36 ","pages":"313-328"},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140100785","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Fractal Time Series: Background, Estimation Methods, and Performances. 分形时间序列:背景、估算方法和性能。
Advances in neurobiology Pub Date : 2024-01-01 DOI: 10.1007/978-3-031-47606-8_5
Camillo Porcaro, Sadaf Moaveninejad, Valentina D'Onofrio, Antonio DiIeva
{"title":"Fractal Time Series: Background, Estimation Methods, and Performances.","authors":"Camillo Porcaro, Sadaf Moaveninejad, Valentina D'Onofrio, Antonio DiIeva","doi":"10.1007/978-3-031-47606-8_5","DOIUrl":"10.1007/978-3-031-47606-8_5","url":null,"abstract":"<p><p>Over the past 40 years, from its classical application in the characterization of geometrical objects, fractal analysis has been progressively applied to study time series in several different disciplines. In neuroscience, starting from identifying the fractal properties of neuronal and brain architecture, attention has shifted to evaluating brain signals in the time domain. Classical linear methods applied to analyzing neurophysiological signals can lead to classifying irregular components as noise, with a potential loss of information. Thus, characterizing fractal properties, namely, self-similarity, scale invariance, and fractal dimension (FD), can provide relevant information on these signals in physiological and pathological conditions. Several methods have been proposed to estimate the fractal properties of these neurophysiological signals. However, the effects of signal characteristics (e.g., its stationarity) and other signal parameters, such as sampling frequency, amplitude, and noise level, have partially been tested. In this chapter, we first outline the main properties of fractals in the domain of space (fractal geometry) and time (fractal time series). Then, after providing an overview of the available methods to estimate the FD, we test them on synthetic time series (STS) with different sampling frequencies, signal amplitudes, and noise levels. Finally, we describe and discuss the performances of each method and the effect of signal parameters on the accuracy of FD estimation.</p>","PeriodicalId":7360,"journal":{"name":"Advances in neurobiology","volume":"36 ","pages":"95-137"},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140100794","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Fractal-Based Analysis of Arteriovenous Malformations (AVMs). 基于分形的动静脉畸形(AVM)分析。
Advances in neurobiology Pub Date : 2024-01-01 DOI: 10.1007/978-3-031-47606-8_21
Antonio Di Ieva, Gernot Reishofer
{"title":"Fractal-Based Analysis of Arteriovenous Malformations (AVMs).","authors":"Antonio Di Ieva, Gernot Reishofer","doi":"10.1007/978-3-031-47606-8_21","DOIUrl":"10.1007/978-3-031-47606-8_21","url":null,"abstract":"<p><p>Arteriovenous malformations (AVMs) are cerebrovascular lesions consisting of a pathologic tangle of the vessels characterized by a core termed the nidus, which is the \"nest\" where the fistulous connections occur. AVMs can cause headache, stroke, and/or seizures. Their treatment can be challenging requiring surgery, endovascular embolization, and/or radiosurgery as well. AVMs' morphology varies greatly among patients, and there is still a lack of standardization of angioarchitectural parameters, which can be used as morphometric parameters as well as potential clinical biomarkers (e.g., related to prognosis).In search of new diagnostic and prognostic neuroimaging biomarkers of AVMs, computational fractal-based models have been proposed for describing and quantifying the angioarchitecture of the nidus. In fact, the fractal dimension (FD) can be used to quantify AVMs' branching pattern. Higher FD values are related to AVMs characterized by an increased number and tortuosity of the intranidal vessels or to an increasing angioarchitectural complexity as a whole. Moreover, FD has been investigated in relation to the outcome after Gamma Knife radiosurgery, and an inverse relationship between FD and AVM obliteration was found.Taken altogether, FD is able to quantify in a single and objective value what neuroradiologists describe in qualitative and/or semiquantitative way, thus confirming FD as a reliable morphometric neuroimaging biomarker of AVMs and as a potential surrogate imaging biomarker. Moreover, computational fractal-based techniques are under investigation for the automatic segmentation and extraction of the edges of the nidus in neuroimaging, which can be relevant for surgery and/or radiosurgery planning.</p>","PeriodicalId":7360,"journal":{"name":"Advances in neurobiology","volume":"36 ","pages":"413-428"},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140100796","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A Self-Similarity Logic May Shape the Organization of the Nervous System. 自相似性逻辑可能塑造神经系统的组织结构
Advances in neurobiology Pub Date : 2024-01-01 DOI: 10.1007/978-3-031-47606-8_10
Diego Guidolin, Cinzia Tortorella, Raffaele De Caro, Luigi F Agnati
{"title":"A Self-Similarity Logic May Shape the Organization of the Nervous System.","authors":"Diego Guidolin, Cinzia Tortorella, Raffaele De Caro, Luigi F Agnati","doi":"10.1007/978-3-031-47606-8_10","DOIUrl":"10.1007/978-3-031-47606-8_10","url":null,"abstract":"<p><p>From the morphological point of view, the nervous system exhibits a fractal, self-similar geometry at various levels of observations, from single cells up to cell networks. From the functional point of view, it is characterized by a hierarchical organization in which self-similar structures (networks) of different miniaturizations are nested within each other. In particular, neuronal networks, interconnected to form neuronal systems, are formed by neurons, which operate thanks to their molecular networks, mainly having proteins as components that via protein-protein interactions can be assembled in multimeric complexes working as micro-devices. On this basis, the term \"self-similarity logic\" was introduced to describe a nested organization where, at the various levels, almost the same rules (logic) to perform operations are used. Self-similarity and self-similarity logic both appear to be intimately linked to the biophysical evidence for the nervous system being a pattern-forming system that can flexibly switch from one coherent state to another. Thus, they can represent the key concepts to describe its complexity and its concerted, holistic behavior.</p>","PeriodicalId":7360,"journal":{"name":"Advances in neurobiology","volume":"36 ","pages":"203-225"},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140100770","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Multifractal Analysis of Brain Tumor Interface in Glioblastoma. 胶质母细胞瘤脑肿瘤界面的多分形分析
Advances in neurobiology Pub Date : 2024-01-01 DOI: 10.1007/978-3-031-47606-8_25
Jacksson Sánchez, Miguel Martín-Landrove
{"title":"Multifractal Analysis of Brain Tumor Interface in Glioblastoma.","authors":"Jacksson Sánchez, Miguel Martín-Landrove","doi":"10.1007/978-3-031-47606-8_25","DOIUrl":"10.1007/978-3-031-47606-8_25","url":null,"abstract":"<p><p>The dynamics of tumor growth is a very complex process, generally accompanied by numerous chromosomal aberrations that determine its genetic and dynamical heterogeneity. Consequently, the tumor interface exhibits a non-regular and heterogeneous behavior often described by a single fractal dimension. A more suitable approach is to consider the tumor interface as a multifractal object that can be described by a set of generalized fractal dimensions. In the present work, detrended fluctuation and multifractal analysis are used to characterize the complexity of glioblastoma.</p>","PeriodicalId":7360,"journal":{"name":"Advances in neurobiology","volume":"36 ","pages":"487-499"},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140100809","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Interpretation of Neurodegenerative GWAS Risk Alleles in Microglia and their Interplay with Other Cell Types. 解读小胶质细胞的神经退行性 GWAS 风险等位基因及其与其他细胞类型的相互作用。
Advances in neurobiology Pub Date : 2024-01-01 DOI: 10.1007/978-3-031-55529-9_29
Inge R Holtman, Christopher K Glass, Alexi Nott
{"title":"Interpretation of Neurodegenerative GWAS Risk Alleles in Microglia and their Interplay with Other Cell Types.","authors":"Inge R Holtman, Christopher K Glass, Alexi Nott","doi":"10.1007/978-3-031-55529-9_29","DOIUrl":"10.1007/978-3-031-55529-9_29","url":null,"abstract":"<p><p>Microglia have been implicated in numerous neurodegenerative and neuroinflammatory disorders; however, the causal contribution of this immune cell type is frequently debated. Genetic studies offer a unique vantage point in that they infer causality over a secondary consequence. Genome-wide association studies (GWASs) have identified hundreds of loci in the genome that are associated with susceptibility to neurodegenerative disorders. GWAS studies implicate microglia in the pathogenesis of Alzheimer's disease (AD), Parkinson's disease (PD), multiple sclerosis (MS), and to a lesser degree suggest a role for microglia in vascular dementia (VaD), frontotemporal dementia (FTD), and amyotrophic lateral sclerosis (ALS), and other neurodegenerative and neuropsychiatric disorders. The contribution and function of GWAS risk loci on disease progression is an ongoing field of study, in which large genomic datasets, and an extensive framework of computational tools, have proven to be crucial. Several GWAS risk loci are shared between disorders, pointing towards common pleiotropic mechanisms. In this chapter, we introduce key concepts in GWAS and post-GWAS interpretation of neurodegenerative disorders, with a focus on GWAS risk genes implicated in microglia, their interplay with other cell types and shared convergence of GWAS risk loci on microglia.</p>","PeriodicalId":7360,"journal":{"name":"Advances in neurobiology","volume":"37 ","pages":"531-544"},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142103371","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Microglia and Multiple Sclerosis. 小胶质细胞与多发性硬化症
Advances in neurobiology Pub Date : 2024-01-01 DOI: 10.1007/978-3-031-55529-9_25
Brady P Hammond, Sharmistha P Panda, Deepak K Kaushik, Jason R Plemel
{"title":"Microglia and Multiple Sclerosis.","authors":"Brady P Hammond, Sharmistha P Panda, Deepak K Kaushik, Jason R Plemel","doi":"10.1007/978-3-031-55529-9_25","DOIUrl":"https://doi.org/10.1007/978-3-031-55529-9_25","url":null,"abstract":"<p><p>Multiple sclerosis (MS) is a devastating autoimmune disease that leads to profound disability. This disability arises from the stochastic, regional loss of myelin-the insulating sheath surrounding neurons-in the central nervous system (CNS). The demyelinated regions are dominated by the brain's resident macrophages: microglia. Microglia perform a variety of functions in MS and are thought to initiate and perpetuate demyelination through their interactions with peripheral immune cells that traffic into the brain. However, microglia are also likely essential for recruiting and promoting the differentiation of cells that can restore lost myelin in a process known as remyelination. Given these seemingly opposing functions, an overarching beneficial or detrimental role is yet to be ascribed to these immune cells. In this chapter, we will discuss microglia dynamics throughout the MS disease course and probe the apparent dichotomy of microglia as the drivers of both demyelination and remyelination.</p>","PeriodicalId":7360,"journal":{"name":"Advances in neurobiology","volume":"37 ","pages":"445-456"},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142103374","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信