Advances in neurobiology最新文献

筛选
英文 中文
Contactomics of Microglia and Intercellular Communication. 小胶质细胞的接触组学与细胞间通信
Advances in neurobiology Pub Date : 2024-01-01 DOI: 10.1007/978-3-031-55529-9_8
Csaba Cserép, Balázs Pósfai, Eszter Szabadits, Ádám Dénes
{"title":"Contactomics of Microglia and Intercellular Communication.","authors":"Csaba Cserép, Balázs Pósfai, Eszter Szabadits, Ádám Dénes","doi":"10.1007/978-3-031-55529-9_8","DOIUrl":"https://doi.org/10.1007/978-3-031-55529-9_8","url":null,"abstract":"<p><p>Microglia represent the main immunocompetent cell type in the parenchyma of the brain and the spinal cord, with roles extending way beyond their immune functions. While emerging data show the pivotal role of microglia in brain development, brain health and brain diseases, the exact mechanisms through which microglia contribute to complex neuroimmune interactions are still largely unclear. Understanding the communication between microglia and other cells represents an important cornerstone of these interactions, which may provide novel opportunities for therapeutic interventions in neurological or psychiatric disorders. As such, in line with studying the effects of the numerous soluble mediators that influence neuroimmune processes, attention on physical interactions between microglia and other cells in the CNS has increased substantially in recent years. In this chapter, we briefly summarize the latest literature on \"microglial contactomics\" and its functional implications in health and disease.</p>","PeriodicalId":7360,"journal":{"name":"Advances in neurobiology","volume":"37 ","pages":"135-149"},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142103364","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Emerging Microglial Therapies and Targets in Clinical Trial. 临床试验中的新兴小胶质细胞疗法和靶点
Advances in neurobiology Pub Date : 2024-01-01 DOI: 10.1007/978-3-031-55529-9_35
Yan Ling, Andrea Crotti
{"title":"Emerging Microglial Therapies and Targets in Clinical Trial.","authors":"Yan Ling, Andrea Crotti","doi":"10.1007/978-3-031-55529-9_35","DOIUrl":"https://doi.org/10.1007/978-3-031-55529-9_35","url":null,"abstract":"<p><p>Modulation of microglia function for treatment of neurodegenerative and neuropsychiatric disorders is an emerging field of neuroscience drug development. This is largely attributed to human genetic association studies combined with biological evidence indicating that the innate immune system acts as a causal contributor superimposed on the reactive component of neuronal loss in neurological dysfunction. The identification of disease risk gene variants that encode immune-modulatory proteins in microglia provides tools to evaluate how microglia cellular function or dysfunction affect neuronal health. The development of clinical stage therapeutic compounds that modify myeloid cell function enables us to investigate how modulating microglia function could become a transformational approach to mitigate neurological disorders. Improving our ability to boost microglia-promoting homeostatic and reparative functions hopefully will translate into achieving a better outcome for patients affected by neurological diseases. In this chapter, we aim to provide an overview of the microglial emerging therapies and targets being studied in current clinical trials.</p>","PeriodicalId":7360,"journal":{"name":"Advances in neurobiology","volume":"37 ","pages":"623-637"},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142103365","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Emerging Models to Study Human Microglia In vitro. 体外研究人类小胶质细胞的新兴模型
Advances in neurobiology Pub Date : 2024-01-01 DOI: 10.1007/978-3-031-55529-9_30
Henna Jäntti, Lois Kistemaker, Alice Buonfiglioli, Lot D De Witte, Tarja Malm, Elly M Hol
{"title":"Emerging Models to Study Human Microglia In vitro.","authors":"Henna Jäntti, Lois Kistemaker, Alice Buonfiglioli, Lot D De Witte, Tarja Malm, Elly M Hol","doi":"10.1007/978-3-031-55529-9_30","DOIUrl":"https://doi.org/10.1007/978-3-031-55529-9_30","url":null,"abstract":"<p><p>New in vitro models provide an exciting opportunity to study live human microglia. Previously, a major limitation in understanding human microglia in health and disease has been their limited availability. Here, we provide an overview of methods to obtain human stem cell or blood monocyte-derived microglia-like cells that provide a nearly unlimited source of live human microglia for research. We address how understanding microglial ontogeny can help modeling microglial identity and function in a dish with increased accuracy. Moreover, we categorize stem cell-derived differentiation methods into embryoid body based, growth factor driven, and coculture-driven approaches, and review novel viral approaches to reprogram stem cells directly into microglia-like cells. Furthermore, we review typical readouts used in the field to verify microglial identity and characterize functional microglial phenotypes. We provide an overview of methods used to study microglia in environments more closely resembling the (developing) human CNS, such as cocultures and brain organoid systems with incorporated or innately developing microglia. We highlight how microglia-like cells can be utilized to reveal molecular and functional mechanisms in human disease context, focusing on Alzheimer's disease and other neurodegenerative diseases as well as neurodevelopmental diseases. Finally, we provide a critical overview of challenges and future opportunities to more accurately model human microglia in a dish and conclude that novel in vitro microglia-like cells provide an exciting potential to bring preclinical research of microglia to a new era.</p>","PeriodicalId":7360,"journal":{"name":"Advances in neurobiology","volume":"37 ","pages":"545-568"},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142103366","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Enkephalin Rescues Temporomandibular Joint Pain-Related Behavior in Rats. 脑啡肽能挽救大鼠颞下颌关节疼痛相关行为
Advances in neurobiology Pub Date : 2024-01-01 DOI: 10.1007/978-3-031-45493-6_7
Karin N Westlund, A Caitlynn Iddings
{"title":"Enkephalin Rescues Temporomandibular Joint Pain-Related Behavior in Rats.","authors":"Karin N Westlund, A Caitlynn Iddings","doi":"10.1007/978-3-031-45493-6_7","DOIUrl":"10.1007/978-3-031-45493-6_7","url":null,"abstract":"<p><p>Temporomandibular joint disorders include a variety of clinical syndromes that are difficult to manage if associated with debilitating severe jaw pain. Thus, seeking additional experimental therapies for temporomandibular joint pain reduction is warranted. Targeted enkephalin gene therapy approaches provide clear promise for pain control. The studies detailed here indicate significant analgesia and protection of joint tissue are provided after injection of an overexpression viral vector gene therapy near the joint. The viral vector gene therapy described provides overexpression of naturally occurring opioid peptides after its uptake by trigeminal nerve endings. The viral vectors act as independent \"minipump\" sources for the opioid peptide synthesis in the neuronal cytoplasm producing the intended biological function, reduction of pain, and tissue repair. The antinociceptive effects provided with this delivery method of opioid expression persist for over 4 weeks. This is coincident with the expected time frame for the duration of the transgene overproduction of the endogenous opioid peptide before its diminution due to dormancy of the virus. These experimental studies establish a basis for the use of replication-defective herpes simplex type 1-based gene therapy for severe chronic inflammatory temporomandibular joint destruction and pain. As innovative means of significantly reducing joint inflammation and preserving tissue architecture, gene therapies may extend their clinical usefulness for patients with temporomandibular joint disorders.</p>","PeriodicalId":7360,"journal":{"name":"Advances in neurobiology","volume":"35 ","pages":"125-136"},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141316485","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The Role of Endogenous Opioids in Cardioprotection. 内源性阿片类药物在心脏保护中的作用
Advances in neurobiology Pub Date : 2024-01-01 DOI: 10.1007/978-3-031-45493-6_19
Cristina Sirbu
{"title":"The Role of Endogenous Opioids in Cardioprotection.","authors":"Cristina Sirbu","doi":"10.1007/978-3-031-45493-6_19","DOIUrl":"10.1007/978-3-031-45493-6_19","url":null,"abstract":"<p><p>The opioid system involves opioid receptors (OPRs) and endogenous opioid peptides.This chapter will focus on the distribution of OPRs in the cardiovascular system, the expression pattern in the heart, the activation by opioid peptides, and the effects of OPRs activation with potential relevance in cardiovascular performance. In the heart, OPRs are co-expressed with beta adrenergic receptors (β-ARs) in the G-protein-coupled receptor (GPCR) superfamily, functionally cross-talk with β-Ars and modify catecholamine-induced effects. They are involved in cardiac contractility, energy metabolism, myocyte survival or death, vascular resistance. The effects of the opioid system in the regulation of systemic circulation at both the central and peripheral level are presented. The pathways are discussed under physiological (i.e., aging) and pathological conditions (atherosclerosis, heart failure, essential hypertension, ischemic stress). Stimulation of OPRs not only inhibits cardiac excitation-contraction coupling, but also protects the heart against hypoxic and ischemic injury. An enhanced sensitivity to opioids of endocrine organs and neuronal systems is operative in hypertensive patients. The opioid system can be pharmacologically engaged to selectively mimic these responses via cardiac and nervous signaling. The clinical opportunities for the use of cardioprotective effects of opioids require future investigations to provide more specific details of the impact on cardiac performance and electrophysiological properties.</p>","PeriodicalId":7360,"journal":{"name":"Advances in neurobiology","volume":"35 ","pages":"381-395"},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141316454","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Interactions Between Endogenous Opioids and the Immune System. 内源性阿片类药物与免疫系统之间的相互作用
Advances in neurobiology Pub Date : 2024-01-01 DOI: 10.1007/978-3-031-45493-6_3
Wei Du
{"title":"Interactions Between Endogenous Opioids and the Immune System.","authors":"Wei Du","doi":"10.1007/978-3-031-45493-6_3","DOIUrl":"10.1007/978-3-031-45493-6_3","url":null,"abstract":"<p><p>The endogenous opioid system, which consists of opioid receptors and their ligands, is widely expressed in the nervous system and also found in the immune system. As a part of the body's defense machinery, the immune system is heavily regulated by endogenous opioid peptides. Many types of immune cells, including macrophages, dendritic cells, neutrophils, and lymphocytes are influenced by endogenous opioids, which affect cell activation, differentiation, proliferation, apoptosis, phagocytosis, and cytokine production. Additionally, immune cells also synthesize and secrete endogenous opioid peptides and participate peripheral analgesia. This chapter is structured into two sections. Part one focuses on immunoregulatory functions of central endogenous opioids; and part two describes how opioid peptide-containing immune cells participate in local analgesia.</p>","PeriodicalId":7360,"journal":{"name":"Advances in neurobiology","volume":"35 ","pages":"27-43"},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141316487","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The Role of Astrocytes in Parkinson's Disease : Astrocytes in Parkinson's Disease. 星形胶质细胞在帕金森病中的作用:帕金森病中的星形胶质细胞。
Advances in neurobiology Pub Date : 2024-01-01 DOI: 10.1007/978-3-031-64839-7_13
Roger Garcia, Sara Zarate, Rahul Srinivasan
{"title":"The Role of Astrocytes in Parkinson's Disease : Astrocytes in Parkinson's Disease.","authors":"Roger Garcia, Sara Zarate, Rahul Srinivasan","doi":"10.1007/978-3-031-64839-7_13","DOIUrl":"10.1007/978-3-031-64839-7_13","url":null,"abstract":"<p><p>Parkinson's disease (PD) is a neurodegenerative disorder with a complex and multifactorial pathogenesis. This chapter delves into the critical role of astrocytes in PD. Once viewed as supporting cells in the central nervous system, astrocytes have emerged as key players in both maintaining neuronal health and contributing to neurodegeneration in PD. Their functions play a dual role in the progression of PD, ranging from protective functions like secretion of neurotrophic factors and clearance of α-synuclein to detrimental functions like promotion of neuroinflammation. This chapter is structured into three primary sections: the morphological and functional organization of astrocytes, astrocytic calcium signaling, and the role of astrocyte heterogeneity in PD. We provide a detailed exploration of astrocytic organelles, bidirectional astrocyte-neuron interactions, and the impact of astrocytic secretions such as antioxidant molecules and neurotrophic factors. Furthermore, we discuss the influence of astrocytes on non-neuronal cells, including interactions with microglia and the blood-brain barrier (BBB). By examining the multifaceted roles of astrocytes, in this chapter, we aim to bridge basic astrocyte biology with the clinical complexities of PD, offering insights into novel therapeutic strategies. The inclusion of astrocyte biology in our broader research approach will aid in the development of more effective treatment strategies for PD.</p>","PeriodicalId":7360,"journal":{"name":"Advances in neurobiology","volume":"39 ","pages":"319-343"},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142071755","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Astrocyte-Neuron Interactions in Substance Use Disorders. 物质使用障碍中星形胶质细胞与神经元的相互作用
Advances in neurobiology Pub Date : 2024-01-01 DOI: 10.1007/978-3-031-64839-7_7
Eden V Harder, Janay P Franklin, Jonathan W VanRyzin, Kathryn J Reissner
{"title":"Astrocyte-Neuron Interactions in Substance Use Disorders.","authors":"Eden V Harder, Janay P Franklin, Jonathan W VanRyzin, Kathryn J Reissner","doi":"10.1007/978-3-031-64839-7_7","DOIUrl":"10.1007/978-3-031-64839-7_7","url":null,"abstract":"<p><p>Engagement of astrocytes within the brain's reward circuitry has been apparent for approximately 30 years, when noncontingent drug administration was observed to lead to cytological markers of reactive astrocytes. Since that time, advanced approaches in rodent behavior and astrocyte monitoring have revealed complex interactions between astrocytes with drug type, animal sex, brain region, and dose and duration of drug administration. A number of studies now collectively reveal that rodent drug self-administration followed by prolonged abstinence results in decreased features of structure and synaptic colocalization of astrocytes. In addition, stimulation of astrocytes in the nucleus accumbens with DREADD receptors or pharmacological compounds opposes drug-seeking behavior. These findings provide a clear path for ongoing investigation into astrocytes as mediators of drug action in the brain and underscore the potential therapeutic utility of astrocytes in the regulation of drug craving and relapse vulnerability.</p>","PeriodicalId":7360,"journal":{"name":"Advances in neurobiology","volume":"39 ","pages":"165-191"},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142071747","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
EEG Biomarkers for Autism: Rational, Support, and the Qualification Process. 自闭症脑电图生物标志物:自闭症脑电图生物标志物:合理性、支持和鉴定过程。
Advances in neurobiology Pub Date : 2024-01-01 DOI: 10.1007/978-3-031-69491-2_19
Caitlin M Hudac, Sara Jane Webb
{"title":"EEG Biomarkers for Autism: Rational, Support, and the Qualification Process.","authors":"Caitlin M Hudac, Sara Jane Webb","doi":"10.1007/978-3-031-69491-2_19","DOIUrl":"10.1007/978-3-031-69491-2_19","url":null,"abstract":"<p><p>In this chapter, we highlight the advantages, progress, and pending challenges of developing electroencephalography (EEG) and event-related potential (ERP) biomarkers for use in autism spectrum disorder (ASD). We describe reasons why global efforts towards precision treatment in ASD are utilizing EEG indices to quantify biological mechanisms. We overview common sensory processing and attention biomarkers and provide translational examples examining the genetic etiology of autism across animal models and human subgroups. We describe human-specific social biomarkers related to face perception, a complex social cognitive process that may prove informative of autistic social behaviors. Lastly, we discuss outstanding considerations for quantifying EEG biomarkers, the challenges associated with rigor and reproducibility, contexts of future use, and propose opportunities for combinatory multidimensional biomarkers.</p>","PeriodicalId":7360,"journal":{"name":"Advances in neurobiology","volume":"40 ","pages":"545-576"},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142674895","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Neural Circuitry-Related Biomarkers for Drug Development in Psychiatry: An Industry Perspective. 用于精神病学药物开发的神经回路相关生物标记物:行业视角。
Advances in neurobiology Pub Date : 2024-01-01 DOI: 10.1007/978-3-031-69491-2_2
Patricio O'Donnell, Derek L Buhl, Jason Johannesen, Marijn Lijffijt
{"title":"Neural Circuitry-Related Biomarkers for Drug Development in Psychiatry: An Industry Perspective.","authors":"Patricio O'Donnell, Derek L Buhl, Jason Johannesen, Marijn Lijffijt","doi":"10.1007/978-3-031-69491-2_2","DOIUrl":"https://doi.org/10.1007/978-3-031-69491-2_2","url":null,"abstract":"<p><p>Drug development in psychiatry has been hampered by the lack of reliable ways to determine the neurobiological effects of the assets tested, difficulties in identifying patient subsets more amenable to benefit from a given asset, and issues with executing trials in a manner that would convincingly provide answers. An emerging idea in many companies is to validate tools to address changes in neural circuits by pharmacological tools as a key piece in quantifying the effects of our drugs. Here, we review past, present, and emerging approaches to capture the outcome of the modulation of brain circuits. The field is now ripe for implementing these approaches in drug development.</p>","PeriodicalId":7360,"journal":{"name":"Advances in neurobiology","volume":"40 ","pages":"45-65"},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142674410","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信