果蝇作为动物模型来确定多巴胺转运体遗传变异与脑部疾病相关的功能和行为意义。

Q3 Neuroscience
Samuel J Mabry, Angela M Carter, Aurelio Galli
{"title":"果蝇作为动物模型来确定多巴胺转运体遗传变异与脑部疾病相关的功能和行为意义。","authors":"Samuel J Mabry, Angela M Carter, Aurelio Galli","doi":"10.1007/978-3-031-96364-3_9","DOIUrl":null,"url":null,"abstract":"<p><p>Drosophila melanogaster, commonly referred to as the \"fruit fly,\" has been a long-utilized animal model in multiple areas of biological research. It is estimated that 75% of human genes, which are associated with disease, have homologues in Drosophila. The conservation of biological systems, the genetic tractability, short generation time, and a broad array of available behavioral assessments make Drosophila an especially robust model organism for neuroscience investigations. The dopamine (DA) system, in particular, is highly conserved between mammals and Drosophila. Mutations of the DA transporter (DAT), a negative regulator of DA neurotransmission, have been associated with multiple different neuropsychiatric and neurodegenerative disorders, including autism spectrum disorders (ASDs), attention deficit hyperactivity disorder (ADHD), and Parkinson's disease (PD). Utilization of Drosophila models demonstrates specific structural and functional alterations in mutated DAT that manifest as unique behavioral phenotypes. Ultimately, combining techniques ranging from biochemistry, electrochemistry, and complex behavioral analyses facilitated a deeper understanding of how transporter function and dysfunction can translate to neurological and neuropsychiatric disorders.</p>","PeriodicalId":7360,"journal":{"name":"Advances in neurobiology","volume":"46 ","pages":"215-234"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Drosophila as an Animal Model To Determine the Functional and Behavioral Significance of Dopamine Transporter Genetic Variations Associated with Brain Disorders.\",\"authors\":\"Samuel J Mabry, Angela M Carter, Aurelio Galli\",\"doi\":\"10.1007/978-3-031-96364-3_9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Drosophila melanogaster, commonly referred to as the \\\"fruit fly,\\\" has been a long-utilized animal model in multiple areas of biological research. It is estimated that 75% of human genes, which are associated with disease, have homologues in Drosophila. The conservation of biological systems, the genetic tractability, short generation time, and a broad array of available behavioral assessments make Drosophila an especially robust model organism for neuroscience investigations. The dopamine (DA) system, in particular, is highly conserved between mammals and Drosophila. Mutations of the DA transporter (DAT), a negative regulator of DA neurotransmission, have been associated with multiple different neuropsychiatric and neurodegenerative disorders, including autism spectrum disorders (ASDs), attention deficit hyperactivity disorder (ADHD), and Parkinson's disease (PD). Utilization of Drosophila models demonstrates specific structural and functional alterations in mutated DAT that manifest as unique behavioral phenotypes. Ultimately, combining techniques ranging from biochemistry, electrochemistry, and complex behavioral analyses facilitated a deeper understanding of how transporter function and dysfunction can translate to neurological and neuropsychiatric disorders.</p>\",\"PeriodicalId\":7360,\"journal\":{\"name\":\"Advances in neurobiology\",\"volume\":\"46 \",\"pages\":\"215-234\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in neurobiology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/978-3-031-96364-3_9\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Neuroscience\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in neurobiology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/978-3-031-96364-3_9","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Neuroscience","Score":null,"Total":0}
引用次数: 0

摘要

黑腹果蝇(Drosophila melanogaster),通常被称为“果蝇”,在生物学研究的多个领域中一直是一种长期使用的动物模型。据估计,75%与疾病相关的人类基因在果蝇中有同源物。生物系统的保守性、遗传的可追溯性、短的繁殖时间和广泛的行为评估使果蝇成为神经科学研究的一个特别强大的模式生物。尤其是多巴胺(DA)系统,在哺乳动物和果蝇之间高度保守。DA转运蛋白(DAT)的突变是DA神经传递的负调节因子,与多种不同的神经精神和神经退行性疾病有关,包括自闭症谱系障碍(asd)、注意缺陷多动障碍(ADHD)和帕金森病(PD)。果蝇模型的利用证明了DAT突变中特定的结构和功能改变,表现为独特的行为表型。最终,结合生物化学、电化学和复杂行为分析等技术,促进了对转运蛋白功能和功能障碍如何转化为神经和神经精神疾病的更深入理解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Drosophila as an Animal Model To Determine the Functional and Behavioral Significance of Dopamine Transporter Genetic Variations Associated with Brain Disorders.

Drosophila melanogaster, commonly referred to as the "fruit fly," has been a long-utilized animal model in multiple areas of biological research. It is estimated that 75% of human genes, which are associated with disease, have homologues in Drosophila. The conservation of biological systems, the genetic tractability, short generation time, and a broad array of available behavioral assessments make Drosophila an especially robust model organism for neuroscience investigations. The dopamine (DA) system, in particular, is highly conserved between mammals and Drosophila. Mutations of the DA transporter (DAT), a negative regulator of DA neurotransmission, have been associated with multiple different neuropsychiatric and neurodegenerative disorders, including autism spectrum disorders (ASDs), attention deficit hyperactivity disorder (ADHD), and Parkinson's disease (PD). Utilization of Drosophila models demonstrates specific structural and functional alterations in mutated DAT that manifest as unique behavioral phenotypes. Ultimately, combining techniques ranging from biochemistry, electrochemistry, and complex behavioral analyses facilitated a deeper understanding of how transporter function and dysfunction can translate to neurological and neuropsychiatric disorders.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advances in neurobiology
Advances in neurobiology Neuroscience-Neurology
CiteScore
2.80
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信