ISME communicationsPub Date : 2025-01-06eCollection Date: 2025-01-01DOI: 10.1093/ismeco/ycaf001
Sergio E Morales, Sven P Tobias-Hünefeldt, Evelyn Armstrong, William S Pearman, Kirill Bogdanov
{"title":"Marine phytoplankton impose strong selective pressures on <i>in vitro</i> microbiome assembly, but drift is the dominant process.","authors":"Sergio E Morales, Sven P Tobias-Hünefeldt, Evelyn Armstrong, William S Pearman, Kirill Bogdanov","doi":"10.1093/ismeco/ycaf001","DOIUrl":"10.1093/ismeco/ycaf001","url":null,"abstract":"<p><p>Phytoplankton are known ecosystem engineers that modulate ocean community assembly processes, but the universality and extent of their microbiome control remains unclear. We used <i>in vitro</i> incubations and 16S ribosomal RNA gene amplicon sequencing to test the influence of Southern and South Pacific oceans dominant phytoplankton on assembly processes and community successions in response to phytoplankton blooms. Phytoplankton grown with reduced-diversity cultures or supplemented with exogenously added microbiomes showed reduced diversity, suggesting environmental filtering. Community profiles were distinct under all culture conditions, further confirming strong selection for specific microbiomes based on phytoplankton. Analysis of core, abundant, and rare organisms in each culture condition showed a conserved response in which core organisms were enriched under conditions of exogenously added phytoplankton. Progression through phytoplankton growth phases selected first for rare and abundant organisms, with increased selection for core members during the exponential phase and relaxing of selection during the death phase, as seen throughout incubations for microbiome-only controls. Surprisingly, selection process quantification identified drift as the dominant process across all conditions and growth phases, with homogenous selection and dispersal limitation accounting for the remainder. Altogether, using Southern Ocean-derived model organisms we confirmed the role phytoplankton play in community assembly but also demonstrated that stochastic processes still predominately drive community selection.</p>","PeriodicalId":73516,"journal":{"name":"ISME communications","volume":"5 1","pages":"ycaf001"},"PeriodicalIF":5.1,"publicationDate":"2025-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11843096/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143484837","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Soil microbial carbon use efficiency differs between mycorrhizal trees: insights from substrate stoichiometry and microbial networks.","authors":"Jing Yu, Jingyi Yang, Lingrui Qu, Xiaoyi Huang, Yue Liu, Ping Jiang, Chao Wang","doi":"10.1093/ismeco/ycae173","DOIUrl":"10.1093/ismeco/ycae173","url":null,"abstract":"<p><p>The role of mycorrhizal associations in controlling forest soil carbon storage remains under debate. This uncertainty is potentially due to an incomplete understanding of their influence on the free-living soil microbiome and its functions. In this study, rhizosphere and non-rhizosphere soils were collected from eight arbuscular mycorrhizal (AM) and seven ectomycorrhizal (ECM) tree species in a temperate forest. We employed high-throughput sequencing and <sup>18</sup>O-H<sub>2</sub>O labeling to analyze the soil microbial community and carbon use efficiency (CUE), respectively. We find microbial respiration rates are higher in rhizosphere than that in non-rhizosphere soils for ECM trees, whereas microbial growth rates show no significant differences. Consequently, microbial CUE is lower in rhizosphere compared to non-rhizosphere soils for ECM trees. In addition, we find that non-rhizosphere soils from ECM trees exhibited higher CUE compared to those from AM trees. Furthermore, we observe that bacterial-fungal co-occurrence networks in ECM soils exhibit greater complexity relative to AM ones. Using random forest and structural equation modeling analyses, we find that microbial stoichiometric carbon/nitrogen imbalance and network complexity are key predictors of soil microbial CUE for AM and ECM trees, respectively. Our findings shed new light on the pivotal role of mycorrhizal associations in shaping free-living microbial communities and their metabolic characteristics in the studied soils. These insights are critical for predicting soil carbon sequestration in response to shifts in ECM and AM species within temperate forest under climate change.</p>","PeriodicalId":73516,"journal":{"name":"ISME communications","volume":"5 1","pages":"ycae173"},"PeriodicalIF":5.1,"publicationDate":"2024-12-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11742255/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143017587","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
ISME communicationsPub Date : 2024-12-27eCollection Date: 2025-01-01DOI: 10.1093/ismeco/ycae172
Jiahui Lin, Zhongmin Dai, Mei Lei, Qian Qi, Weijun Zhou, Lena Q Ma, Randy A Dahlgren, Jianming Xu
{"title":"Arsenic modifies the microbial community assembly of soil-root habitats in <i>Pteris vittata</i>.","authors":"Jiahui Lin, Zhongmin Dai, Mei Lei, Qian Qi, Weijun Zhou, Lena Q Ma, Randy A Dahlgren, Jianming Xu","doi":"10.1093/ismeco/ycae172","DOIUrl":"10.1093/ismeco/ycae172","url":null,"abstract":"<p><p><i>Pteris vittata</i>, renowned for its ability to hyperaccumulate arsenic, presents a promising solution to the escalating issue of global soil arsenic contamination. This fern cultivates a unique underground microbial community to enhance its environmental adaptability. However, our understanding of the assembly process and the long-term ecological impacts of this community remains limited, hindering the development of effective soil remediation strategies. This study addresses this gap by investigating soil-root habitats from three geographically diverse fields comprising a gradient of arsenic contamination, complemented by a time-scale greenhouse experiment. Field investigations reveal that arsenic stress influences community assembly dynamics in the rhizosphere by enhancing processes of homogeneous selection. Greenhouse experiments further reveal that arsenic exposure alters the assembly trajectory of rhizosphere communities by promoting key microbial modules. Specifically, arsenic exposure increases the enrichment of a core taxon (i.e. <i>Rhizobiaceae</i>) in the rhizosphere, both in field and greenhouse settings, boosting their abundance from undetectable levels to 0.02% in the soil after phytoremediation. Notably, arsenic exposure also promotes a pathogenic group (i.e. <i>Spirochaetaceae</i>) in the rhizosphere, increasing their abundance from undetectable levels to 0.1% in the greenhouse. This raise concerns that warrant further investigation in future phytoremediation studies. Overall, this study elucidates the assembly dynamics of the soil microbiome following the introduction of a remediation plant and emphasizes the often-overlooked impacts on soil microbial community following phytoremediation. By probing the ecological impacts of remediation plants, this work advances a more nuanced understanding of the complex ecological implications inherent in phytoremediation processes.</p>","PeriodicalId":73516,"journal":{"name":"ISME communications","volume":"5 1","pages":"ycae172"},"PeriodicalIF":5.1,"publicationDate":"2024-12-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11742257/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143017514","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
ISME communicationsPub Date : 2024-12-26eCollection Date: 2025-01-01DOI: 10.1093/ismeco/ycae171
Huizhen Chao, Linlin Zhong, Ina Schaefer, Mingming Sun, André Junggebauer, Feng Hu, Stefan Scheu
{"title":"Litter quality modulates changes in bacterial and fungal communities during the gut transit of earthworm species of different ecological groups.","authors":"Huizhen Chao, Linlin Zhong, Ina Schaefer, Mingming Sun, André Junggebauer, Feng Hu, Stefan Scheu","doi":"10.1093/ismeco/ycae171","DOIUrl":"10.1093/ismeco/ycae171","url":null,"abstract":"<p><p>Earthworms are keystone animals stimulating litter decomposition and nutrient cycling. However, earthworms comprise diverse species which live in different soil layers and consume different types of food. Microorganisms in the gut of earthworms are likely to contribute significantly to their ability to digest organic matter, but this may vary among earthworm species. Here, we analyse the effect of food (litter) quality on gut microbiota and their changes during the gut passage (from foregut to hindgut) of earthworms of different ecological groups. The endogeic (soil living) species <i>Aporrectodea caliginosa</i> and the anecic (litter feeding) species <i>Lumbricus terrestris</i> were fed with high- (rape leaves) and low-quality litter (wheat straw) in a microcosm experiment for 18 weeks. Irrespective of earthworm species, alpha diversity of bacterial and fungal communities changed little during the gut passage, with the composition and diversity of microbial communities in the gut generally resembling those in soil more than in litter. In addition, the low-quality litter supported higher alpha diversity and more complex communities than high-quality litter. Further, gut microbial communities of the anecic <i>L. terrestris</i> changed less during gut passage than those of the endogeic <i>A. caliginosa</i>, especially when fed low-quality litter. Our findings indicate that earthworm gut microbial communities are predominantly shaped by the soil they ingest, but are modulated by the quality of litter they feed on and earthworm ecological group. Overall, the results suggest that earthworms primarily influence soil microbiota by mixing and spreading microorganisms from different microhabitats through bioturbation rather than by digesting microorganisms.</p>","PeriodicalId":73516,"journal":{"name":"ISME communications","volume":"5 1","pages":"ycae171"},"PeriodicalIF":5.1,"publicationDate":"2024-12-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11778916/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143070062","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
ISME communicationsPub Date : 2024-12-24eCollection Date: 2025-01-01DOI: 10.1093/ismeco/ycae170
Rebecca Große, Markus Heuser, Jonna E Teikari, Dinesh K Ramakrishnan, Ahmed Abdelfattah, Elke Dittmann
{"title":"Microcystin shapes the <i>Microcystis</i> phycosphere through community filtering and by influencing cross-feeding interactions.","authors":"Rebecca Große, Markus Heuser, Jonna E Teikari, Dinesh K Ramakrishnan, Ahmed Abdelfattah, Elke Dittmann","doi":"10.1093/ismeco/ycae170","DOIUrl":"10.1093/ismeco/ycae170","url":null,"abstract":"<p><p>The cyanobacterium <i>Microcystis</i> causes harmful algal blooms that pose a major threat to human health and ecosystem services, particularly due to the prevalence of the potent hepatotoxin microcystin (MC). With their pronounced EPS layer, <i>Microcystis</i> colonies also serve as a hub for heterotrophic phycosphere bacteria. Here, we tested the hypothesis that the genotypic plasticity in its ability to produce MC influences the composition and assembly of the <i>Microcystis</i> phycosphere microbiome. In an analysis of individual colonies of a natural <i>Microcystis</i> bloom, we observed a significantly reduced richness of the community in the presence of MC biosynthesis genes. A subsequent synthetic community experiment with 21 heterotrophic bacterial strains in co-cultivation with either the wild-type strain <i>Microcystis aeruginosa</i> PCC 7806 or the MC-free mutant Δ<i>mcyB</i> revealed not only a tug-of-war between phototrophic and heterotrophic bacteria, but also a reciprocal dominance of two isolates of the genus <i>Sphingomonas</i> and <i>Flavobacterium</i>. In contrast, an <i>Agrobacterium</i> isolate thrived equally well in both consortia. In substrate utilization tests, <i>Sphingomonas</i> showed the strongest dependence on <i>Microcystis</i> exudates with a clear preference for the wild-type strain. Genome sequencing revealed a high potential for complementary cross-feeding, particularly for the <i>Agrobacterium</i> and <i>Sphingomonas</i> isolates but no potential for MC degradation. We postulate that strain-specific functional traits, such as the ability to perform glycolate oxidation, play a crucial role in the cross-feeding interactions, and that MC is one of the determining factors in the <i>Microcystis</i> phycosphere due to its interference with inorganic carbon metabolism.</p>","PeriodicalId":73516,"journal":{"name":"ISME communications","volume":"5 1","pages":"ycae170"},"PeriodicalIF":5.1,"publicationDate":"2024-12-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11748430/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143017584","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Influences of fluctuating nutrient loadings on nitrate-reducing microorganisms in rivers.","authors":"Shengjie Li, Rui Zhao, Shuo Wang, Yiwen Yang, Muhe Diao, Guodong Ji","doi":"10.1093/ismeco/ycae168","DOIUrl":"10.1093/ismeco/ycae168","url":null,"abstract":"<p><p>Rivers serve important functions for human society and are significantly impacted by anthropogenic nutrient inputs (e.g. organic and sulfur compounds). Reduced organic and sulfur compounds influence the nitrogen cycle as they are electron donors of microbial nitrate reduction. Water pollution caused by individual nutrients and the mechanisms have been studied, but how the variation in multiple nutrient loadings influences nitrate-reducing microorganisms is less understood. Two sets of microcosms were established and exposed to nitrate, along with either acetate or thiosulfate, at different times. Nutrient concentrations responded to the loading pollutant. The nutrient loading order was more important in shaping microbial community structure and microbial interactions through the exchange of growth-required substances. This indicated that upstream or historical nutrient inflows impacted current nitrate reduction by changing the seeding microbial community, highlighting the importance of river connectivity. Based on metatranscriptome analysis, although the order and type of nutrient loadings were equally important in regulating global transcriptomes, transcripts of enzymes for key metabolisms (nitrate reduction, sulfur oxidation, etc.) more actively responded to the nutrient type. The regulation of a small set of genes was sufficient to make the transition, while most transcripts were not degraded and regenerated. These insights are important for understanding the varying pollution status of rivers and for developing effective solutions, such as remediation.</p>","PeriodicalId":73516,"journal":{"name":"ISME communications","volume":"5 1","pages":"ycae168"},"PeriodicalIF":5.1,"publicationDate":"2024-12-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11748280/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143017582","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
ISME communicationsPub Date : 2024-12-23eCollection Date: 2025-01-01DOI: 10.1093/ismeco/ycae167
Howard Junca, Arndt Steube, Simon Mrowietz, Johannes Stallhofer, Marius Vital, Luiz Gustavo Dos Anjos Borges, Dietmar H Pieper, Andreas Stallmach
{"title":"Bacterial and viral assemblages in ulcerative colitis patients following fecal microbiota and fecal filtrate transfer.","authors":"Howard Junca, Arndt Steube, Simon Mrowietz, Johannes Stallhofer, Marius Vital, Luiz Gustavo Dos Anjos Borges, Dietmar H Pieper, Andreas Stallmach","doi":"10.1093/ismeco/ycae167","DOIUrl":"10.1093/ismeco/ycae167","url":null,"abstract":"<p><p>Fecal microbiota filtrate transfer is discussed as a safe alternative to fecal microbiota transfer (FMT) to treat ulcerative colitis. We investigated modulation of viral and bacterial composition during fecal microbiota filtrate transfer followed by FMT in six patients with active ulcerative colitis (where clinical activity improved in three patients after filtrate transfer) and combined 16S ribosomal RNA gene amplicon sequencing with a virome analysis pipeline including fast viral particle enrichment and metagenome mapping to detect frequencies of 45,033 reference bacteriophage genomes. We showed that after antibiotic treatment and during filtrate transfer, the bacterial community typically adopted a stable composition distinct to that before antibiotic treatment, with no change toward a donor community. FMT in contrast typically changed the bacterial community to a community with similarity to donor(s). There were no indications of an establishment of predominant donor viruses during filtrate transfer but a remodeling of the virome. In contrast, the establishment of donor viruses during FMT correlated with the predicted hosts established during such transfer. Our approach warrants further investigation in a randomized trial to evaluate larger therapeutic interventions in a comparable and efficient manner.</p>","PeriodicalId":73516,"journal":{"name":"ISME communications","volume":"5 1","pages":"ycae167"},"PeriodicalIF":5.1,"publicationDate":"2024-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11740987/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143017458","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
ISME communicationsPub Date : 2024-12-23eCollection Date: 2024-01-01DOI: 10.1093/ismeco/ycae163
Kihyun Lee, Seong-Hyeon Kim, Seongjoon Moon, Sangha Kim, Changhan Lee
{"title":"Phyletic patterns of bacterial growth temperature in <i>Pseudomonas</i> and <i>Paenibacillus</i> reveal gradual and sporadic evolution towards cold adaptation.","authors":"Kihyun Lee, Seong-Hyeon Kim, Seongjoon Moon, Sangha Kim, Changhan Lee","doi":"10.1093/ismeco/ycae163","DOIUrl":"10.1093/ismeco/ycae163","url":null,"abstract":"<p><p>Bacterial species adapt to cold environments with diverse molecular mechanisms enabling their growth under low ambient temperature. The emergence of cold-adapted species at macro-evolutionary scale, however, has not been systematically explored. In this study, we performed phylogenetic analysis on the growth temperature traits in the genera that occupy broad environmental and host niches and contain known cold-adapted species. Our results demonstrate that in the genus <i>Pseudomonas</i>, cold-adapted species formed a distinct and conserved clade, whereas in <i>Paenibacillus</i>, cold-adapted species were sporadically distributed throughout the phylogenetic tree. The cold-adapted clade of <i>Pseudomonas</i> exhibited genome-wide signatures of adaptation and possessed clade-specific genes. This indicates that there are diverse evolutionary patterns in the divergence of cold-adapted species among different bacterial genera.</p>","PeriodicalId":73516,"journal":{"name":"ISME communications","volume":"4 1","pages":"ycae163"},"PeriodicalIF":5.1,"publicationDate":"2024-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11694702/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142923983","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
ISME communicationsPub Date : 2024-12-23eCollection Date: 2025-01-01DOI: 10.1093/ismeco/ycae165
Kristina Michl, Makoto Kanasugi, Alena Förster, Regina Wuggenig, Sulemana Issifu, Katarzyna Hrynkiewicz, Christoph Emmerling, Christophe David, Benjamin Dumont, Linda-Maria Dimitrova Mårtensson, Frank Rasche, Gabriele Berg, Tomislav Cernava
{"title":"The microbiome of a perennial cereal differs from annual winter wheat only in the root endosphere.","authors":"Kristina Michl, Makoto Kanasugi, Alena Förster, Regina Wuggenig, Sulemana Issifu, Katarzyna Hrynkiewicz, Christoph Emmerling, Christophe David, Benjamin Dumont, Linda-Maria Dimitrova Mårtensson, Frank Rasche, Gabriele Berg, Tomislav Cernava","doi":"10.1093/ismeco/ycae165","DOIUrl":"10.1093/ismeco/ycae165","url":null,"abstract":"<p><p>The intensification of agriculture has led to environmental degradation, including the loss of biodiversity. This has prompted interest in perennial grain cropping systems to address and mitigate some of these negative impacts. In order to determine if perennial grain cultivation promotes a higher microbial diversity, we assessed the endophytic microbiota of a perennial grain crop (intermediate wheatgrass, <i>Thinopyrum intermedium</i> L.) in comparison to its annual counterpart, wheat (<i>Triticum aestivum</i> L.). The study covered three sampling sites in a pan-European gradient (Sweden, Belgium, and France), two plant genotypes, three plant compartments (roots, stems, and leaves), and two sampling time points. We observed that the host genotype effect was mainly evident in the belowground compartment, and only to a lesser extent in the aboveground tissues, with a similar pattern at all three sampling sites. Moreover, intermediate wheatgrass roots harbored a different bacterial community composition and higher diversity and richness compared to their annual counterparts. The root bacterial diversity was influenced by not only several soil chemical parameters, such as the carbon:nitrogen ratio, but also soil microbial parameters, such as soil respiration and dehydrogenase activity. Consistent findings across time and space suggest stable mechanisms in microbiota assembly associated with perennial grain cropping, underscoring their potential role in supporting biodiversity within sustainable agricultural systems.</p>","PeriodicalId":73516,"journal":{"name":"ISME communications","volume":"5 1","pages":"ycae165"},"PeriodicalIF":5.1,"publicationDate":"2024-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11812607/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143400902","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
ISME communicationsPub Date : 2024-12-18eCollection Date: 2025-01-01DOI: 10.1093/ismeco/ycae164
Cong Fei, Anne Booker, Sarah Klass, Nayani K Vidyarathna, So Hyun Ahn, Amin R Mohamed, Muhammad Arshad, Patricia M Glibert, Cynthia A Heil, Joaquín Martínez Martínez, Shady A Amin
{"title":"Friends and foes: symbiotic and algicidal bacterial influence on <i>Karenia brevis</i> blooms.","authors":"Cong Fei, Anne Booker, Sarah Klass, Nayani K Vidyarathna, So Hyun Ahn, Amin R Mohamed, Muhammad Arshad, Patricia M Glibert, Cynthia A Heil, Joaquín Martínez Martínez, Shady A Amin","doi":"10.1093/ismeco/ycae164","DOIUrl":"10.1093/ismeco/ycae164","url":null,"abstract":"<p><p>Harmful Algal Blooms (HABs) of the toxigenic dinoflagellate <i>Karenia brevis</i> (KB) are pivotal in structuring the ecosystem of the Gulf of Mexico (GoM), decimating coastal ecology, local economies, and human health. Bacterial communities associated with toxigenic phytoplankton species play an important role in influencing toxin production in the laboratory, supplying essential factors to phytoplankton and even killing blooming species. However, our knowledge of the prevalence of these mechanisms during HAB events is limited, especially for KB blooms. Here, we introduced native microbial communities from the GoM, collected during two phases of a <i>Karenia</i> bloom, into KB laboratory cultures. Using bacterial isolation, physiological experiments, and shotgun metagenomic sequencing, we identified both putative enhancers and mitigators of KB blooms. Metagenome-assembled genomes from the <i>Roseobacter</i> clade showed strong correlations with KB populations during HABs, akin to symbionts. A bacterial isolate from this group of metagenome-assembled genomes, <i>Mameliella alba</i>, alleviated vitamin limitations of KB by providing it with vitamins B<sub>1</sub>, B<sub>7</sub> and B<sub>12</sub>. Conversely, bacterial isolates belonging to Bacteroidetes and Gammaproteobacteria, <i>Croceibacter atlanticus</i>, and <i>Pseudoalteromonas spongiae</i>, respectively, exhibited strong algicidal properties against KB. We identified a serine protease homolog in <i>P. spongiae</i> that putatively drives the algicidal activity in this isolate. While the algicidal mechanism in <i>C. atlanticus</i> is unknown, we demonstrated the efficiency of <i>C. atlanticus</i> to mitigate KB growth in blooms from the GoM. Our results highlight the importance of specific bacteria in influencing the dynamics of HABs and suggest strategies for future HAB management.</p>","PeriodicalId":73516,"journal":{"name":"ISME communications","volume":"5 1","pages":"ycae164"},"PeriodicalIF":5.1,"publicationDate":"2024-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11740886/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143017460","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}