Time of first contact determines cooperator success in a three-member microbial consortium.

IF 5.1 Q1 ECOLOGY
ISME communications Pub Date : 2025-01-13 eCollection Date: 2025-01-01 DOI:10.1093/ismeco/ycaf004
Rachel Los, Tobias Fecker, P A M van Touw, Rinke J van Tatenhove-Pel, Timon Idema
{"title":"Time of first contact determines cooperator success in a three-member microbial consortium.","authors":"Rachel Los, Tobias Fecker, P A M van Touw, Rinke J van Tatenhove-Pel, Timon Idema","doi":"10.1093/ismeco/ycaf004","DOIUrl":null,"url":null,"abstract":"<p><p>Microbial communities are characterized by complex interaction, including cooperation and cheating, which have significant ecological and applied implications. However, the factors determining the success of cooperators in the presence of cheaters remain poorly understood. Here, we investigate the dynamics of cooperative interactions in a consortium consisting of a cross-feeding pair and a cheater strain using individual-based simulations and an engineered <i>L. cremoris</i> toy consortium. Our simulations reveal first contact time between cooperators as a critical predictor for cooperator success. By manipulating the relative distances between cooperators and cheaters or the background growth rates, influenced by the cost of cooperation, we can modulate this first contact time and influence cooperator success. Our study underscores the importance of cooperators coming into contact with each other on time, which provides a simple and generalizable framework for understanding and designing cooperative interactions in microbial communities. These findings contribute to our understanding of cross-feeding dynamics and offer practical insights for synthetic and biotechnological applications.</p>","PeriodicalId":73516,"journal":{"name":"ISME communications","volume":"5 1","pages":"ycaf004"},"PeriodicalIF":5.1000,"publicationDate":"2025-01-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11879117/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ISME communications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/ismeco/ycaf004","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"ECOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Microbial communities are characterized by complex interaction, including cooperation and cheating, which have significant ecological and applied implications. However, the factors determining the success of cooperators in the presence of cheaters remain poorly understood. Here, we investigate the dynamics of cooperative interactions in a consortium consisting of a cross-feeding pair and a cheater strain using individual-based simulations and an engineered L. cremoris toy consortium. Our simulations reveal first contact time between cooperators as a critical predictor for cooperator success. By manipulating the relative distances between cooperators and cheaters or the background growth rates, influenced by the cost of cooperation, we can modulate this first contact time and influence cooperator success. Our study underscores the importance of cooperators coming into contact with each other on time, which provides a simple and generalizable framework for understanding and designing cooperative interactions in microbial communities. These findings contribute to our understanding of cross-feeding dynamics and offer practical insights for synthetic and biotechnological applications.

求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信