Contrasting diversity patterns between microeukaryotic and prokaryotic communities in cold-seep sediments.

IF 5.1 Q1 ECOLOGY
ISME communications Pub Date : 2025-01-08 eCollection Date: 2025-01-01 DOI:10.1093/ismeco/ycaf002
Zhimeng Xu, Jiawei Chen, Wenzhao Liang, Zhao Liang Chen, Wenxue Wu, Xiaomin Xia, Bingzhang Chen, Ding He, Hongbin Liu
{"title":"Contrasting diversity patterns between microeukaryotic and prokaryotic communities in cold-seep sediments.","authors":"Zhimeng Xu, Jiawei Chen, Wenzhao Liang, Zhao Liang Chen, Wenxue Wu, Xiaomin Xia, Bingzhang Chen, Ding He, Hongbin Liu","doi":"10.1093/ismeco/ycaf002","DOIUrl":null,"url":null,"abstract":"<p><p>Cold seeps are hotspots of biodiversity. However, the quantification of the microbial diversity, particularly that of microeukaryotes, remains scarce and little is known about the active groups. In this study we investigated the diversity and activity of prokaryotes and microeukaryotes in the Haima cold seep sediments in the northern South China Sea using both DNA (whole community) and RNA (active community) signatures. We found that, in general, prokaryotes had lower diversity in the seep sediment than in non-seep regions while microeukaryotes showed the opposite pattern. This finding could be explained by the dominance of homogeneous selection in the prokaryotic community while microeukaryotic communities were less affected by environmental selection, harboring high richness of abundant groups in the seep regions. The compositional difference between DNA and RNA communities was much larger in microeukaryotes than prokaryotes, which could be reflected by the large number of inactive microeukaryotic taxa. Compared to the whole community, the seep-active groups, e.g. among microeukaryotes, <i>Breviatea, Labyrinthulomycetes</i>, and <i>Apicomplexa</i> were more sensitive to and directly influenced by environmental factors, suggesting their pivotal roles in ecosystem biodiversity and functions. This study provides insight into the distinct diversity patterns and regulating mechanisms that occur between prokaryotic and microeukaryotic communities in cold-seep sediments, deepening our understanding of microbial ecology in deep-sea extreme habitats.</p>","PeriodicalId":73516,"journal":{"name":"ISME communications","volume":"5 1","pages":"ycaf002"},"PeriodicalIF":5.1000,"publicationDate":"2025-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11879339/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ISME communications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/ismeco/ycaf002","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"ECOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Cold seeps are hotspots of biodiversity. However, the quantification of the microbial diversity, particularly that of microeukaryotes, remains scarce and little is known about the active groups. In this study we investigated the diversity and activity of prokaryotes and microeukaryotes in the Haima cold seep sediments in the northern South China Sea using both DNA (whole community) and RNA (active community) signatures. We found that, in general, prokaryotes had lower diversity in the seep sediment than in non-seep regions while microeukaryotes showed the opposite pattern. This finding could be explained by the dominance of homogeneous selection in the prokaryotic community while microeukaryotic communities were less affected by environmental selection, harboring high richness of abundant groups in the seep regions. The compositional difference between DNA and RNA communities was much larger in microeukaryotes than prokaryotes, which could be reflected by the large number of inactive microeukaryotic taxa. Compared to the whole community, the seep-active groups, e.g. among microeukaryotes, Breviatea, Labyrinthulomycetes, and Apicomplexa were more sensitive to and directly influenced by environmental factors, suggesting their pivotal roles in ecosystem biodiversity and functions. This study provides insight into the distinct diversity patterns and regulating mechanisms that occur between prokaryotic and microeukaryotic communities in cold-seep sediments, deepening our understanding of microbial ecology in deep-sea extreme habitats.

求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信