Shotgun metagenomics reveals the flexibility and diversity of Arctic marine microbiomes.

IF 5.1 Q1 ECOLOGY
ISME communications Pub Date : 2025-01-21 eCollection Date: 2025-01-01 DOI:10.1093/ismeco/ycaf007
Nastasia J Freyria, Thais C de Oliveira, Arnaud Meng, Eric Pelletier, Connie Lovejoy
{"title":"Shotgun metagenomics reveals the flexibility and diversity of Arctic marine microbiomes.","authors":"Nastasia J Freyria, Thais C de Oliveira, Arnaud Meng, Eric Pelletier, Connie Lovejoy","doi":"10.1093/ismeco/ycaf007","DOIUrl":null,"url":null,"abstract":"<p><p>Polar oceanographic regions are exposed to rapid changes in temperature, salinity, and light fields that determine microbial species distributions, but resilience to an increasingly unstable climate is unknown. To unravel microbial genomic potential of the Northern Baffin Bay's polynya, we constructed eight metagenomes from the same latitude but targeting two sides of <i>Pikialasorsuaq</i> (The North Water) that differ by current systems, stratification, and temperature regimes. Samples from the surface and subsurface chlorophyll maximum (SCM) of both sides were collected 13 months apart. Details of metabolic pathways were determined for 18 bacteria and 10 microbial eukaryote metagenome-assembled genomes (MAGs). The microbial eukaryotic MAGs were associated with the dominant green algae in the Mamiellales and diatoms in the Mediophyceae, which tended to respectively dominate the eastern and western sides of <i>Pikialasorsuaq</i>. We show that microbial community taxonomic and functional signatures were ca. 80% similar at the latitude sampled with only 20% of genes associated with local conditions. From the metagenomes we found genes involved in osmotic regulation, antifreeze proteins, and photosystem protection, with hydrocarbon biodegradation and methane oxidation potential detected. The shared genomic compliment was consistent with adaptation to the Arctic's extreme fluctuating conditions, with implications for their evolutionary history and the long-term survival of a pan-arctic microbiome. In particular, previously unrecognized genetic capabilities for methane bio-attenuation and hydrocarbon metabolism in eukaryotic phytoplankton suggest adaptation to dark conditions that will remain, despite climate warming, in the high latitude offshore waters of a future Arctic.</p>","PeriodicalId":73516,"journal":{"name":"ISME communications","volume":"5 1","pages":"ycaf007"},"PeriodicalIF":5.1000,"publicationDate":"2025-01-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11847657/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ISME communications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/ismeco/ycaf007","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"ECOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Polar oceanographic regions are exposed to rapid changes in temperature, salinity, and light fields that determine microbial species distributions, but resilience to an increasingly unstable climate is unknown. To unravel microbial genomic potential of the Northern Baffin Bay's polynya, we constructed eight metagenomes from the same latitude but targeting two sides of Pikialasorsuaq (The North Water) that differ by current systems, stratification, and temperature regimes. Samples from the surface and subsurface chlorophyll maximum (SCM) of both sides were collected 13 months apart. Details of metabolic pathways were determined for 18 bacteria and 10 microbial eukaryote metagenome-assembled genomes (MAGs). The microbial eukaryotic MAGs were associated with the dominant green algae in the Mamiellales and diatoms in the Mediophyceae, which tended to respectively dominate the eastern and western sides of Pikialasorsuaq. We show that microbial community taxonomic and functional signatures were ca. 80% similar at the latitude sampled with only 20% of genes associated with local conditions. From the metagenomes we found genes involved in osmotic regulation, antifreeze proteins, and photosystem protection, with hydrocarbon biodegradation and methane oxidation potential detected. The shared genomic compliment was consistent with adaptation to the Arctic's extreme fluctuating conditions, with implications for their evolutionary history and the long-term survival of a pan-arctic microbiome. In particular, previously unrecognized genetic capabilities for methane bio-attenuation and hydrocarbon metabolism in eukaryotic phytoplankton suggest adaptation to dark conditions that will remain, despite climate warming, in the high latitude offshore waters of a future Arctic.

鸟枪宏基因组学揭示了北极海洋微生物组的灵活性和多样性。
极地海洋区暴露在温度、盐度和光场的快速变化中,这些变化决定了微生物物种的分布,但对日益不稳定的气候的适应能力尚不清楚。为了揭示巴芬湾北部多冰湖的微生物基因组潜力,我们从同一纬度构建了八个宏基因组,但目标是Pikialasorsuaq(北水)的两侧,这两个区域因当前系统、分层和温度制度而不同。两侧表面和亚表面叶绿素最大值(SCM)采样间隔13个月。测定了18种细菌和10种微生物真核生物宏基因组组装基因组(MAGs)的代谢途径细节。微生物真核mag与哺乳科的优势绿藻和中生科的硅藻有关,它们分别倾向于在Pikialasorsuaq的东西两侧占主导地位。我们发现,在采样的纬度上,微生物群落的分类和功能特征相似度约为80%,只有20%的基因与当地条件相关。从宏基因组中,我们发现了涉及渗透调节、抗冻蛋白和光系统保护的基因,并检测了碳氢化合物生物降解和甲烷氧化电位。共享的基因组恭维与对北极极端波动条件的适应是一致的,这对它们的进化史和泛北极微生物群的长期生存有影响。特别是,以前未被认识到的真核浮游植物甲烷生物衰减和碳氢化合物代谢的遗传能力表明,尽管气候变暖,在未来北极的高纬度近海水域,对黑暗条件的适应将继续存在。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信