Fengyang Gu;Luxin Zhang;Shilian Zheng;Jie Chen;Keqiang Yue;Zhijin Zhao;Xiaoniu Yang
{"title":"Detection of Radar Pulse Signals Based on Deep Learning","authors":"Fengyang Gu;Luxin Zhang;Shilian Zheng;Jie Chen;Keqiang Yue;Zhijin Zhao;Xiaoniu Yang","doi":"10.1109/OJSP.2024.3435703","DOIUrl":"https://doi.org/10.1109/OJSP.2024.3435703","url":null,"abstract":"Radar is widely used in aviation, meteorology, and military fields, and radar pulse signal detection has become an indispensable and essential function of cognitive radio systems as well as electronic warfare systems. In this paper, we propose a deep learning-based radar signal detection method. Firstly, we propose a detection method based on raw in-phase and quadrature (IQ) input, which utilizes a convolutional neural network (CNN) to automatically learn the features of radar pulse signals and noises, to accomplish the detection task. To further reduce the computational complexity, we also propose a hybrid detection method that combines compressed sensing (CS) and deep learning, which reduces the length of the signal by compressed downsampling, and then feeds the compressed signal to the CNN for detection. Extensive simulation results show that our proposed IQ-based method outperforms the traditional short-time Fourier transform method as well as three existing deep learning-based detection methods in terms of probability of detection. Furthermore, our proposed IQ-CS-based method can achieve satisfactory detection performance with significantly reduced computational complexity.","PeriodicalId":73300,"journal":{"name":"IEEE open journal of signal processing","volume":"5 ","pages":"991-1004"},"PeriodicalIF":2.9,"publicationDate":"2024-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10614929","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142246552","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Difference Frequency Gridless Sparse Array Processing","authors":"Yongsung Park;Peter Gerstoft","doi":"10.1109/OJSP.2024.3425284","DOIUrl":"https://doi.org/10.1109/OJSP.2024.3425284","url":null,"abstract":"This paper introduces a DOA estimation method for sources beyond the aliasing frequency. The method utilizes multiple frequencies of sources to exploit the frequency difference between them, enabling processing at a frequency below the aliasing frequency. Gridless sparse processing with atomic norm minimization is derived for DOA using difference frequency (DF). This approach achieves higher DOA resolution than previous DF-DOA estimators by enforcing sparsity in the beamforming spectrum and estimating DOAs in the continuous angular domain. We consider one or more measurements in both time (snapshot) and frequency (DF). We also analyze approaches for considering multiple DFs: multi-DF and multi-DF spectral-averaging. Numerical simulations demonstrate the effective performance of the method compared to existing DF techniques.","PeriodicalId":73300,"journal":{"name":"IEEE open journal of signal processing","volume":"5 ","pages":"914-925"},"PeriodicalIF":2.9,"publicationDate":"2024-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10591424","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141964707","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Elad Cohen;Hai Victor Habi;Reuven Peretz;Arnon Netzer
{"title":"Fully Quantized Neural Networks for Audio Source Separation","authors":"Elad Cohen;Hai Victor Habi;Reuven Peretz;Arnon Netzer","doi":"10.1109/OJSP.2024.3425287","DOIUrl":"https://doi.org/10.1109/OJSP.2024.3425287","url":null,"abstract":"Deep neural networks have shown state-of-the-art results in audio source separation tasks in recent years. However, deploying such networks, especially on edge devices, is challenging due to memory and computation requirements. In this work, we focus on quantization, a leading approach for addressing these challenges. We start with a theoretical and empirical analysis of the signal-to-distortion ratio (SDR) in the presence of quantization noise, which presents a fundamental limitation in audio source separation tasks. These analyses show that quantization noise mainly affects performance when the model produces high SDRs. We empirically validate the theoretical insights and illustrate them on audio source separation models. In addition, the empirical analysis shows a high sensitivity to activations quantization, especially to the network's input and output signals. Following the analysis, we propose Fully Quantized Source Separation (FQSS), a quantization-aware training (QAT) method for audio source separation tasks. FQSS introduces a novel loss function based on knowledge distillation that considers quantization-sensitive samples during training and handles the quantization noise of the input and output signals. We validate the efficiency of our method in both time and frequency domains. Finally, we apply FQSS to several architectures (CNNs, LSTMs, and Transformers) and show negligible degradation compared to the full-precision baseline models.","PeriodicalId":73300,"journal":{"name":"IEEE open journal of signal processing","volume":"5 ","pages":"926-933"},"PeriodicalIF":2.9,"publicationDate":"2024-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10591369","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141966239","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Efficient Key-Based Adversarial Defense for ImageNet by Using Pre-Trained Models","authors":"AprilPyone MaungMaung;Isao Echizen;Hitoshi Kiya","doi":"10.1109/OJSP.2024.3419569","DOIUrl":"https://doi.org/10.1109/OJSP.2024.3419569","url":null,"abstract":"In this paper, we propose key-based defense model proliferation by leveraging pre-trained models and utilizing recent efficient fine-tuning techniques on ImageNet-1 k classification. First, we stress that deploying key-based models on edge devices is feasible with the latest model deployment advancements, such as Apple CoreML, although the mainstream enterprise edge artificial intelligence (Edge AI) has been focused on the Cloud. Then, we point out that the previous key-based defense on on-device image classification is impractical for two reasons: (1) training many classifiers from scratch is not feasible, and (2) key-based defenses still need to be thoroughly tested on large datasets like ImageNet. To this end, we propose to leverage pre-trained models and utilize efficient fine-tuning techniques to proliferate key-based models even on limited compute resources. Experiments were carried out on the ImageNet-1 k dataset using adaptive and non-adaptive attacks. The results show that our proposed fine-tuned key-based models achieve a superior classification accuracy (more than 10% increase) compared to the previous key-based models on classifying clean and adversarial examples.","PeriodicalId":73300,"journal":{"name":"IEEE open journal of signal processing","volume":"5 ","pages":"902-913"},"PeriodicalIF":2.9,"publicationDate":"2024-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10572223","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141964708","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Overview of the First Pathloss Radio Map Prediction Challenge","authors":"Çağkan Yapar;Fabian Jaensch;Ron Levie;Gitta Kutyniok;Giuseppe Caire","doi":"10.1109/OJSP.2024.3419563","DOIUrl":"https://doi.org/10.1109/OJSP.2024.3419563","url":null,"abstract":"Pathloss quantifies the reduction in power density of a signal radiated from a transmitter. The attenuation is due to large-scale effects such as free-space propagation loss and interactions (e.g., penetration, reflection, and diffraction) of the signal with objects such as buildings, vehicles, trees, and pedestrians in the propagation environment. Many current or planned wireless communications applications require the knowledge (or a reliable approximation) of the pathloss on a dense grid (radio map) of the environment of interest. Deterministic simulation methods such as ray tracing are known to provide very good estimates of pathloss values. However, their high computational complexity makes them unsuitable for most of the applications envisaged. To promote research and facilitate a fair comparison among the recently proposed fast and accurate deep learning-based pathloss radio map prediction methods, we have organized the ICASSP 2023 First Pathloss Radio Map Prediction Challenge. In this overview paper, we describe the pathloss radio map prediction problem, provide a literature survey of the current state of the art, describe the challenge datasets, the challenge task, and the challenge evaluation methodology. Finally, we provide a brief overview of the submitted methods and present the results of the challenge.","PeriodicalId":73300,"journal":{"name":"IEEE open journal of signal processing","volume":"5 ","pages":"948-963"},"PeriodicalIF":2.9,"publicationDate":"2024-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10572278","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141993995","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"SINR Analysis of Windowed OFDM in Power Line Communication Systems","authors":"Fausto García-Gangoso;Fernando Cruz-Roldán","doi":"10.1109/OJSP.2024.3419448","DOIUrl":"https://doi.org/10.1109/OJSP.2024.3419448","url":null,"abstract":"The use of an accurate cyclic prefix length is crucial in orthogonal frequency division multiplexing (OFDM) to avoid intercarrier and intersymbol interference. Although there have been many works that analyse the interference of windowed OFDM, this study remains open in the context of power line communications (PLCs) taking into account the physical-layer (PHY) specifications of the standards. This paper focuses on obtaining a closed-form expression of the input-output relationship in windowed OFDM power line communication (PLC) systems under the condition of insufficient cyclic prefix, while incorporating various blocks deployed in the PHY under IEEE 1901 standards. The derived analysis is important for quantifying the undesired signal component in each subcarrier at a specific time, which renders the detection of the corresponding symbol more difficult. Moreover, a novel procedure is proposed that allows the use of a smaller number of redundant samples to avoid interference. This novel procedure, performed in the receiver after the windowing stage, replaces the overlap-and-add operations with multiplications, offering the advantage of requiring fewer samples from the time-domain received signal to recover each transmitted data symbol. Numerical results demonstrate the feasibility of interference-free transmission on channels with a larger number of samples, thereby yielding better results across various PLC scenarios.","PeriodicalId":73300,"journal":{"name":"IEEE open journal of signal processing","volume":"5 ","pages":"1052-1060"},"PeriodicalIF":2.9,"publicationDate":"2024-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10572224","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142518177","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Editorial: Special Issue on the ICASSP 2023 Signal Processing Grand Challenges","authors":"Alexander Bertrand;Ozlem Kalinli","doi":"10.1109/OJSP.2024.3397168","DOIUrl":"https://doi.org/10.1109/OJSP.2024.3397168","url":null,"abstract":"The 2023 IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP 2023) took place in Rhodos, Greece, running from June 4th to June 10th, with a record number of paper submissions and attendees. Since 2021, ICASSP has featured the “Signal Processing Grand Challenges” (SPGC) program, which has become an annual highlight at the conference. ICASSP 2023 featured a record number of 15 SPGCs, carefully selected from a large number of submissions, and covering a wide variety of application domains, including audio, acoustics, speech, biomedical signals, communications, and image processing. A list of accepted SPGCs can be found at \u0000<uri>https://2023.ieeeicassp.org/signal-processing-grand-challenges/</uri>\u0000, which also includes links to detailed information for each challenge.","PeriodicalId":73300,"journal":{"name":"IEEE open journal of signal processing","volume":"5 ","pages":"630-631"},"PeriodicalIF":2.9,"publicationDate":"2024-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10570160","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141447970","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Elizabeth Coda;Brad Clymer;Chance DeSmet;Yijing Watkins;Michael Girard
{"title":"Universal Fourier Attack for Time Series","authors":"Elizabeth Coda;Brad Clymer;Chance DeSmet;Yijing Watkins;Michael Girard","doi":"10.1109/OJSP.2024.3402154","DOIUrl":"https://doi.org/10.1109/OJSP.2024.3402154","url":null,"abstract":"A wide variety of adversarial attacks have been proposed and explored using image and audio data. These attacks are notoriously easy to generate digitally when the attacker can directly manipulate the input to a model, but are much more difficult to implement in the real world. In this paper we present a universal, time invariant attack for general time series data such that the attack has a frequency spectrum primarily composed of the frequencies present in the original data. The universality of the attack makes it fast and easy to implement as no computation is required to add it to an input, while time invariance is useful for real world deployment. Additionally, the frequency constraint ensures the attack can withstand filtering defenses. We demonstrate the effectiveness of the attack on two different classification tasks through both digital and real world experiments, and show that the attack is robust against common transform-and-compare defense pipelines.","PeriodicalId":73300,"journal":{"name":"IEEE open journal of signal processing","volume":"5 ","pages":"858-866"},"PeriodicalIF":2.9,"publicationDate":"2024-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10557789","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141725683","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Augusto Aubry;Marco Boddi;Antonio De Maio;Massimo Rosamilia
{"title":"Sparse DOA Estimation With Polarimetric Arrays","authors":"Augusto Aubry;Marco Boddi;Antonio De Maio;Massimo Rosamilia","doi":"10.1109/OJSP.2024.3411468","DOIUrl":"https://doi.org/10.1109/OJSP.2024.3411468","url":null,"abstract":"This paper addresses the Direction-of-Arrival (DOA) estimation problem using a narrowband polarimetric array sensing system. The considered receiving equipment is composed of two sub-arrays of sensors with orthogonal polarizations. By suitably modeling the received signal via a sparse representation (accounting for the multiple snapshots and the polarimetric array manifold structure), two iterative algorithms, namely Polarimetric Sparse Learning via Iterative Minimization (POL-SLIM) and Polarimetric Sparse Iterative Covariance-based Estimation (POL-SPICE), are devised to accomplish the estimation task. The proposed algorithms provide accurate DOA estimates while enjoying nice (rigorously proven) convergence properties. Numerical analysis shows the effectiveness of POL-SLIM and POL-SPICE to successfully locate signal sources in both passive sensing applications (with large numbers of collected snapshots) and radar spatial processing, also in comparison with single-polarization counterparts as well as theoretical benchmarks.","PeriodicalId":73300,"journal":{"name":"IEEE open journal of signal processing","volume":"5 ","pages":"886-901"},"PeriodicalIF":2.9,"publicationDate":"2024-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10552043","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141725564","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Multi-Channel Low-Rank Convolution of Jointly Compressed Room Impulse Responses","authors":"Martin Jälmby;Filip Elvander;Toon van Waterschoot","doi":"10.1109/OJSP.2024.3410089","DOIUrl":"https://doi.org/10.1109/OJSP.2024.3410089","url":null,"abstract":"The room impulse response (RIR) describes the response of a room to an acoustic excitation signal and models the acoustic channel between a point source and receiver. RIRs are used in a wide range of applications, e.g., virtual reality. In such an application, the availability of closely spaced RIRs and the capability to achieve low latency are imperative to provide an immersive experience. However, representing a complete acoustic environment using a fine grid of RIRs is prohibitive from a storage point of view and without exploiting spatial proximity, acoustic rendering becomes computationally expensive. We therefore propose two methods for the joint compression of multiple RIRs, based on the generalized low-rank approximation of matrices (GLRAM), for the purpose of efficiently storing RIRs and allowing for low-latency convolution. We show how one of the components of the GLRAM decomposition is virtually invariant to the change of position of the source throughout the room and how this can be exploited in the modeling and convolution. In simulations we show how this offers high compression, with less quality degradation than comparable benchmark methods.","PeriodicalId":73300,"journal":{"name":"IEEE open journal of signal processing","volume":"5 ","pages":"850-857"},"PeriodicalIF":2.9,"publicationDate":"2024-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10549780","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141543936","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}