{"title":"变分稀疏高斯过程的因子图方法","authors":"Hoang Minh Huu Nguyen;İsmaıl Şenöz;Bert De Vries","doi":"10.1109/OJSP.2025.3585440","DOIUrl":null,"url":null,"abstract":"A Variational Sparse Gaussian Process (VSGP) is a sophisticated nonparametric probabilistic model that has gained significant popularity since its inception. The VSGP model is often employed as a component of larger models or in a modified form across numerous applications. However, re-deriving the update equations for inference in these variations is technically challenging, which hinders broader adoption. In a separate line of research, message passing-based inference in factor graphs has emerged as an efficient framework for automated Bayesian inference. Despite its advantages, message passing techniques have not yet been applied to VSGP-based models due to the lack of a suitable representation for VSGP models in factor graphs. To address this limitation, we introduce a Sparse Gaussian Process (SGP) node within a Forney-style factor graph (FFG). We derive variational message passing update rules for the SGP node, enabling automated and efficient inference for VSGP-based models. We validate the update rules and illustrate the benefits of the SGP node through experiments in various Gaussian Process applications.","PeriodicalId":73300,"journal":{"name":"IEEE open journal of signal processing","volume":"6 ","pages":"815-837"},"PeriodicalIF":2.7000,"publicationDate":"2025-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=11063321","citationCount":"0","resultStr":"{\"title\":\"A Factor Graph Approach to Variational Sparse Gaussian Processes\",\"authors\":\"Hoang Minh Huu Nguyen;İsmaıl Şenöz;Bert De Vries\",\"doi\":\"10.1109/OJSP.2025.3585440\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A Variational Sparse Gaussian Process (VSGP) is a sophisticated nonparametric probabilistic model that has gained significant popularity since its inception. The VSGP model is often employed as a component of larger models or in a modified form across numerous applications. However, re-deriving the update equations for inference in these variations is technically challenging, which hinders broader adoption. In a separate line of research, message passing-based inference in factor graphs has emerged as an efficient framework for automated Bayesian inference. Despite its advantages, message passing techniques have not yet been applied to VSGP-based models due to the lack of a suitable representation for VSGP models in factor graphs. To address this limitation, we introduce a Sparse Gaussian Process (SGP) node within a Forney-style factor graph (FFG). We derive variational message passing update rules for the SGP node, enabling automated and efficient inference for VSGP-based models. We validate the update rules and illustrate the benefits of the SGP node through experiments in various Gaussian Process applications.\",\"PeriodicalId\":73300,\"journal\":{\"name\":\"IEEE open journal of signal processing\",\"volume\":\"6 \",\"pages\":\"815-837\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2025-07-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=11063321\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE open journal of signal processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/11063321/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE open journal of signal processing","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/11063321/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
A Factor Graph Approach to Variational Sparse Gaussian Processes
A Variational Sparse Gaussian Process (VSGP) is a sophisticated nonparametric probabilistic model that has gained significant popularity since its inception. The VSGP model is often employed as a component of larger models or in a modified form across numerous applications. However, re-deriving the update equations for inference in these variations is technically challenging, which hinders broader adoption. In a separate line of research, message passing-based inference in factor graphs has emerged as an efficient framework for automated Bayesian inference. Despite its advantages, message passing techniques have not yet been applied to VSGP-based models due to the lack of a suitable representation for VSGP models in factor graphs. To address this limitation, we introduce a Sparse Gaussian Process (SGP) node within a Forney-style factor graph (FFG). We derive variational message passing update rules for the SGP node, enabling automated and efficient inference for VSGP-based models. We validate the update rules and illustrate the benefits of the SGP node through experiments in various Gaussian Process applications.