{"title":"利用冷扩散对同分布叠加图像进行分解","authors":"Helena Montenegro;Jaime S. Cardoso","doi":"10.1109/OJSP.2025.3583963","DOIUrl":null,"url":null,"abstract":"With the growing adoption of Deep Learning for imaging tasks in biometrics and healthcare, it becomes increasingly important to ensure privacy when using and sharing images of people. Several works enable privacy-preserving image sharing by anonymizing the images so that the corresponding individuals are no longer recognizable. Most works average images or their embeddings as an anonymization technique, relying on the assumption that the average operation is irreversible. Recently, cold diffusion models, based on the popular denoising diffusion probabilistic models, have succeeded in reversing deterministic transformations on images. In this work, we leverage cold diffusion to decompose superimposed images, empirically demonstrating that it is possible to obtain two or more identically-distributed images given their average. We propose novel sampling strategies for this task and show their efficacy on three datasets. Our findings highlight the risks of averaging images as an anonymization technique and argue for the use of alternative anonymization strategies.","PeriodicalId":73300,"journal":{"name":"IEEE open journal of signal processing","volume":"6 ","pages":"784-794"},"PeriodicalIF":2.9000,"publicationDate":"2025-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=11054277","citationCount":"0","resultStr":"{\"title\":\"Leveraging Cold Diffusion for the Decomposition of Identically Distributed Superimposed Images\",\"authors\":\"Helena Montenegro;Jaime S. Cardoso\",\"doi\":\"10.1109/OJSP.2025.3583963\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"With the growing adoption of Deep Learning for imaging tasks in biometrics and healthcare, it becomes increasingly important to ensure privacy when using and sharing images of people. Several works enable privacy-preserving image sharing by anonymizing the images so that the corresponding individuals are no longer recognizable. Most works average images or their embeddings as an anonymization technique, relying on the assumption that the average operation is irreversible. Recently, cold diffusion models, based on the popular denoising diffusion probabilistic models, have succeeded in reversing deterministic transformations on images. In this work, we leverage cold diffusion to decompose superimposed images, empirically demonstrating that it is possible to obtain two or more identically-distributed images given their average. We propose novel sampling strategies for this task and show their efficacy on three datasets. Our findings highlight the risks of averaging images as an anonymization technique and argue for the use of alternative anonymization strategies.\",\"PeriodicalId\":73300,\"journal\":{\"name\":\"IEEE open journal of signal processing\",\"volume\":\"6 \",\"pages\":\"784-794\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2025-06-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=11054277\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE open journal of signal processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/11054277/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE open journal of signal processing","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/11054277/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Leveraging Cold Diffusion for the Decomposition of Identically Distributed Superimposed Images
With the growing adoption of Deep Learning for imaging tasks in biometrics and healthcare, it becomes increasingly important to ensure privacy when using and sharing images of people. Several works enable privacy-preserving image sharing by anonymizing the images so that the corresponding individuals are no longer recognizable. Most works average images or their embeddings as an anonymization technique, relying on the assumption that the average operation is irreversible. Recently, cold diffusion models, based on the popular denoising diffusion probabilistic models, have succeeded in reversing deterministic transformations on images. In this work, we leverage cold diffusion to decompose superimposed images, empirically demonstrating that it is possible to obtain two or more identically-distributed images given their average. We propose novel sampling strategies for this task and show their efficacy on three datasets. Our findings highlight the risks of averaging images as an anonymization technique and argue for the use of alternative anonymization strategies.