Model Predictive Control Algorithm for Video Coding and Uplink Delivery in Delay-Critical Applications

IF 2.7 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC
Mourad Aklouf;Frédéric Dufaux;Michel Kieffer;Marc Lény
{"title":"Model Predictive Control Algorithm for Video Coding and Uplink Delivery in Delay-Critical Applications","authors":"Mourad Aklouf;Frédéric Dufaux;Michel Kieffer;Marc Lény","doi":"10.1109/OJSP.2025.3584672","DOIUrl":null,"url":null,"abstract":"Emerging applications such as remote car driving, drone control, or distant mobile robot operation impose a very tight constraint on the delay between the acquisition of a video frame by a camera embedded in the operated device and its display at the remote controller. This paper introduces a new frame-level video encoder rate control technique for ultra-low-latency video coding and delivery. A Model Predictive Control approach, exploiting the buffer level at the transmitter and an estimate of the transmission rate, is used to determine the target encoding rate of each video frame to adapt with minimum delay to sudden variations of the transmission channel characteristics. Then, an <inline-formula><tex-math>$R-(QP,D)$</tex-math></inline-formula> model of the rate <inline-formula><tex-math>$R$</tex-math></inline-formula> of the current frame to be encoded as a function of its quantization parameter (QP) and of the distortion <inline-formula><tex-math>$D$</tex-math></inline-formula> of the reference frame is used to get the QP matching the target rate. This QP is then fed to the video coder. The proposed approach is compared to reference algorithms, namely PANDA, FESTIVE, BBA, and BOLA, some of which have been adapted to the considered server-driven low-latency coding and transmission scenario. Simulation results based on 4G bandwidth traces show that the proposed algorithm outperforms the others at different glass-to-glass delay constraints, considering several video quality metrics.","PeriodicalId":73300,"journal":{"name":"IEEE open journal of signal processing","volume":"6 ","pages":"876-889"},"PeriodicalIF":2.7000,"publicationDate":"2025-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=11059858","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE open journal of signal processing","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/11059858/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

Emerging applications such as remote car driving, drone control, or distant mobile robot operation impose a very tight constraint on the delay between the acquisition of a video frame by a camera embedded in the operated device and its display at the remote controller. This paper introduces a new frame-level video encoder rate control technique for ultra-low-latency video coding and delivery. A Model Predictive Control approach, exploiting the buffer level at the transmitter and an estimate of the transmission rate, is used to determine the target encoding rate of each video frame to adapt with minimum delay to sudden variations of the transmission channel characteristics. Then, an $R-(QP,D)$ model of the rate $R$ of the current frame to be encoded as a function of its quantization parameter (QP) and of the distortion $D$ of the reference frame is used to get the QP matching the target rate. This QP is then fed to the video coder. The proposed approach is compared to reference algorithms, namely PANDA, FESTIVE, BBA, and BOLA, some of which have been adapted to the considered server-driven low-latency coding and transmission scenario. Simulation results based on 4G bandwidth traces show that the proposed algorithm outperforms the others at different glass-to-glass delay constraints, considering several video quality metrics.
延迟关键应用中视频编码和上行传输的模型预测控制算法
诸如远程汽车驾驶、无人机控制或远程移动机器人操作等新兴应用,对被操作设备中嵌入的摄像头获取视频帧与遥控器显示视频帧之间的延迟施加了非常严格的限制。本文介绍了一种新的帧级视频编码器速率控制技术,用于超低延迟视频编码和传输。模型预测控制方法利用发射机的缓冲电平和估计的传输速率来确定每个视频帧的目标编码速率,以最小的延迟适应传输信道特性的突然变化。然后,将当前帧的速率$R$编码为其量化参数(QP)和参考帧的失真$D$的函数$R-(QP,D)$模型,得到与目标速率匹配的QP。然后将该QP馈送到视频编码器。将该方法与参考算法进行了比较,即PANDA,喜庆,BBA和BOLA,其中一些算法已经适应了所考虑的服务器驱动的低延迟编码和传输场景。基于4G带宽跟踪的仿真结果表明,在考虑多个视频质量指标的情况下,该算法在不同的玻璃到玻璃延迟约束下优于其他算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
5.30
自引率
0.00%
发文量
0
审稿时长
22 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信