Tell Me What You See: Text-Guided Real-World Image Denoising

IF 2.7 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC
Erez Yosef;Raja Giryes
{"title":"Tell Me What You See: Text-Guided Real-World Image Denoising","authors":"Erez Yosef;Raja Giryes","doi":"10.1109/OJSP.2025.3588715","DOIUrl":null,"url":null,"abstract":"Image reconstruction from noisy sensor measurements is challenging and many methods have been proposed for it. Yet, most approaches focus on learning robust natural image priors while modeling the scene’s noise statistics. In extremely low-light conditions, these methods often remain insufficient. Additional information is needed, such as multiple captures or, as suggested here, scene description. As an alternative, we propose using a text-based description of the scene as an additional prior, something the photographer can easily provide. Inspired by the remarkable success of text-guided diffusion models in image generation, we show that adding image caption information significantly improves image denoising and reconstruction for both synthetic and real-world images. All code and data will be made publicly available upon publication.","PeriodicalId":73300,"journal":{"name":"IEEE open journal of signal processing","volume":"6 ","pages":"890-899"},"PeriodicalIF":2.7000,"publicationDate":"2025-07-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=11078899","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE open journal of signal processing","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/11078899/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

Image reconstruction from noisy sensor measurements is challenging and many methods have been proposed for it. Yet, most approaches focus on learning robust natural image priors while modeling the scene’s noise statistics. In extremely low-light conditions, these methods often remain insufficient. Additional information is needed, such as multiple captures or, as suggested here, scene description. As an alternative, we propose using a text-based description of the scene as an additional prior, something the photographer can easily provide. Inspired by the remarkable success of text-guided diffusion models in image generation, we show that adding image caption information significantly improves image denoising and reconstruction for both synthetic and real-world images. All code and data will be made publicly available upon publication.
告诉我你看到了什么:文本引导的真实世界图像去噪
基于噪声传感器测量的图像重建具有挑战性,已经提出了许多方法。然而,大多数方法都集中在学习鲁棒自然图像先验,同时对场景的噪声统计进行建模。在极弱的光照条件下,这些方法往往是不够的。还需要额外的信息,例如多次捕获,或者此处建议的场景描述。作为替代方案,我们建议使用基于文本的场景描述作为额外的先验,这是摄影师可以轻松提供的。受文本引导扩散模型在图像生成中显著成功的启发,我们表明,添加图像标题信息显著改善了合成图像和真实图像的图像去噪和重建。所有代码和数据将在出版后公开提供。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
5.30
自引率
0.00%
发文量
0
审稿时长
22 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信