用自回归图信号模型学习图结构

IF 2.7 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC
Kyle Donoghue;Ashkan Ashrafi
{"title":"用自回归图信号模型学习图结构","authors":"Kyle Donoghue;Ashkan Ashrafi","doi":"10.1109/OJSP.2025.3588447","DOIUrl":null,"url":null,"abstract":"This paper presents a novel approach to graph learning, GL-AR, which leverages estimated autoregressive coefficients to recover undirected graph structures from time-series graph signals with propagation delay. GL-AR can discern graph structures where propagation between vertices is delayed, mirroring the dynamics of many real-world systems. This is achieved by utilizing the autoregressive coefficients of time-series graph signals in GL-AR’s learning algorithm. Existing graph learning techniques typically minimize the smoothness of a graph signal on a recovered graph structure to learn instantaneous relationships. GL-AR extends this approach by showing that minimizing smoothness with autoregressive coefficients can additionally recover relationships with propagation delay. The efficacy of GL-AR is demonstrated through applications to both synthetic and real-world datasets. Specifically, this work introduces the Graph-Tensor Method, a novel technique for generating synthetic time-series graph signals that represent edges as transfer functions. This method, along with real-world data from the National Climatic Data Center, is used to evaluate GL-AR’s performance in recovering undirected graph structures. Results indicate that GL-AR’s use of autoregressive coefficients enables it to outperform state-of-the-art graph learning techniques in scenarios with nonzero propagation delays. Furthermore, GL-AR’s performance is optimized by a new automated parameter selection algorithm, which eliminates the need for computationally intensive trial-and-error methods.","PeriodicalId":73300,"journal":{"name":"IEEE open journal of signal processing","volume":"6 ","pages":"838-855"},"PeriodicalIF":2.7000,"publicationDate":"2025-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=11078159","citationCount":"0","resultStr":"{\"title\":\"Learning Graph Structures With Autoregressive Graph Signal Models\",\"authors\":\"Kyle Donoghue;Ashkan Ashrafi\",\"doi\":\"10.1109/OJSP.2025.3588447\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a novel approach to graph learning, GL-AR, which leverages estimated autoregressive coefficients to recover undirected graph structures from time-series graph signals with propagation delay. GL-AR can discern graph structures where propagation between vertices is delayed, mirroring the dynamics of many real-world systems. This is achieved by utilizing the autoregressive coefficients of time-series graph signals in GL-AR’s learning algorithm. Existing graph learning techniques typically minimize the smoothness of a graph signal on a recovered graph structure to learn instantaneous relationships. GL-AR extends this approach by showing that minimizing smoothness with autoregressive coefficients can additionally recover relationships with propagation delay. The efficacy of GL-AR is demonstrated through applications to both synthetic and real-world datasets. Specifically, this work introduces the Graph-Tensor Method, a novel technique for generating synthetic time-series graph signals that represent edges as transfer functions. This method, along with real-world data from the National Climatic Data Center, is used to evaluate GL-AR’s performance in recovering undirected graph structures. Results indicate that GL-AR’s use of autoregressive coefficients enables it to outperform state-of-the-art graph learning techniques in scenarios with nonzero propagation delays. Furthermore, GL-AR’s performance is optimized by a new automated parameter selection algorithm, which eliminates the need for computationally intensive trial-and-error methods.\",\"PeriodicalId\":73300,\"journal\":{\"name\":\"IEEE open journal of signal processing\",\"volume\":\"6 \",\"pages\":\"838-855\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2025-07-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=11078159\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE open journal of signal processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/11078159/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE open journal of signal processing","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/11078159/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了一种新的图学习方法GL-AR,它利用估计的自回归系数从具有传播延迟的时间序列图信号中恢复无向图结构。GL-AR可以识别顶点之间传播延迟的图形结构,反映许多现实世界系统的动态。这是通过利用GL-AR学习算法中的时间序列图信号的自回归系数来实现的。现有的图学习技术通常会最小化图信号在恢复图结构上的平滑度,以学习瞬时关系。GL-AR扩展了这种方法,表明最小化自回归系数的平滑性可以额外恢复与传播延迟的关系。GL-AR的有效性通过对合成数据集和实际数据集的应用得到了证明。具体来说,这项工作介绍了图张量方法,这是一种生成合成时间序列图信号的新技术,将边缘表示为传递函数。该方法与来自国家气候数据中心的实际数据一起用于评估GL-AR在恢复无向图结构方面的性能。结果表明,GL-AR使用自回归系数使其在具有非零传播延迟的情况下优于最先进的图学习技术。此外,GL-AR的性能通过一种新的自动参数选择算法进行优化,从而消除了对计算密集型试错方法的需要。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Learning Graph Structures With Autoregressive Graph Signal Models
This paper presents a novel approach to graph learning, GL-AR, which leverages estimated autoregressive coefficients to recover undirected graph structures from time-series graph signals with propagation delay. GL-AR can discern graph structures where propagation between vertices is delayed, mirroring the dynamics of many real-world systems. This is achieved by utilizing the autoregressive coefficients of time-series graph signals in GL-AR’s learning algorithm. Existing graph learning techniques typically minimize the smoothness of a graph signal on a recovered graph structure to learn instantaneous relationships. GL-AR extends this approach by showing that minimizing smoothness with autoregressive coefficients can additionally recover relationships with propagation delay. The efficacy of GL-AR is demonstrated through applications to both synthetic and real-world datasets. Specifically, this work introduces the Graph-Tensor Method, a novel technique for generating synthetic time-series graph signals that represent edges as transfer functions. This method, along with real-world data from the National Climatic Data Center, is used to evaluate GL-AR’s performance in recovering undirected graph structures. Results indicate that GL-AR’s use of autoregressive coefficients enables it to outperform state-of-the-art graph learning techniques in scenarios with nonzero propagation delays. Furthermore, GL-AR’s performance is optimized by a new automated parameter selection algorithm, which eliminates the need for computationally intensive trial-and-error methods.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
5.30
自引率
0.00%
发文量
0
审稿时长
22 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信